Salvianolic acid B slows the progression of breast cancer cell growth via enhancement of apoptosis and reduction of oxidative stress, inflammation, and angiogenesis

Mohamed A. Katary, Rafik Abdelsayed, Abdulmohsin Alhashim, Mohamed Abdelhasib, Ahmed A. Elmarakby

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

Breast cancer is the current leading cause of cancer death in females worldwide. Although current chemotherapeutic drugs effectively reduce the progression of breast cancer, most of these drugs have many unwanted side effects. Salvianolic acid B (Sal-B) is a bioactive compound isolated from the root of Danshen Radix with potent antioxidant and anti-inflammatory properties. Since free radicals play a key role in the initiation and progression of tumor cells growth and enhance their metastatic potential, the current study was designed to investigate the antitumor activity of Sal-B and compare it with the antitumor activity of the traditional anticancer drug, cisplatin. In vitro, Sal-B decreased the human breast cancer adenocarcinoma (MCF-7) cells proliferation in a concentration and time dependent manner. In vivo and similar to cisplatin treatment, Sal-B significantly reduced tumor volume and increased the median survival when compared to tumor positive control mice group injected with Ehrlich solid carcinoma cell line (ESC). Sal-B decreased plasma level of malondialdehyde as a marker of oxidative stress and increased plasma level of reduced glutathione (GSH) as a marker of antioxidant defense when compared to control ESC injected mice. Either Sal-B or cisplatin treatment decreased tumor tissue levels of tumor necrosis factor (TNF-α), matrix metalloproteinase-8 (MMP-8), and Cyclin D1 in ESC treated mice. Contrary to cisplatin treatment, Sal-B did not decrease tumor tissue Ki-67 protein in ESC injected mice. Immunohistochemical analysis revealed that Sal-B or cisplatin treatment increased the expression of the apoptotic markers caspase-3 and P53. Although Sal-B or cisplatin significantly reduced the expression of the angiogenic factor vascular endothelial growth factor (VEGF) in ESC injected mice, only Sal-B reduced expression level of COX-2 in ESC injected mice. Our data suggest that Sal-B exhibits antitumor features against breast cancer cells possibly via enhancing apoptosis and reducing oxidative stress, inflammation, and angiogenesis.

Original languageEnglish (US)
Article number5653
JournalInternational journal of molecular sciences
Volume20
Issue number22
DOIs
StatePublished - Nov 2 2019

Keywords

  • Apoptosis
  • ESC
  • Inflammation
  • Oxidative stress
  • Salvianolic acid b

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Salvianolic acid B slows the progression of breast cancer cell growth via enhancement of apoptosis and reduction of oxidative stress, inflammation, and angiogenesis'. Together they form a unique fingerprint.

  • Cite this