Synergistic mechanism of Ag+-Zn2+ in anti-bacterial activity against Enterococcus faecalis and its application against dentin infection

Wei Fan, Qing Sun, Yanyun Li, Franklin Chi Meng Tay, Bing Fan

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Background: Ag+ and Zn2+ have already been used in combinations to obtain both enhanced antibacterial effect and low cytotoxicity. Despite this, it is still unclear how the Zn2+ co-works with Ag+ in the synergistic antibacterial activity. The main purposes of this study were to investigate the co-work pattern and optimum ratio between Ag+ and Zn2+ in their synergistic antibacterial activity against E. faecalis, the possible mechanisms behind this synergy and the primary application of optimum Ag+-Zn2+ co-work pattern against the E. faecalis biofilm on dentin. A serial of Ag+-Zn2+ atomic combination ratios were tested on both planktonic and biofilm-resident E. faecalis on dentin, their antibacterial efficiency was calculated and optimum ratio determined. And the cytotoxicity of various Ag+-Zn2+ atomic ratios was tested on MC3T3-E1 Cells. The role of Zn2+ in Ag+-Zn2+co-work was evaluated using a Zn2+ pretreatment study and membrane potential-permeability measurement. Results: The results showed that the synergistically promoted antibacterial effect of Ag+-Zn2+ combinations was Zn2+ amount-dependent with the 1:9 and 1:12 Ag+-Zn2+ atomic ratios showing the most powerful ability against both planktonic and biofilm-resident E. faecalis. This co-work could likely be attributed to the depolarization of E. faecalis cell membrane by the addition of Zn2+. The cytotoxicity of the Ag+-Zn2+ atomic ratios of 1:9 and 1:12 was much lower than 2% chlorhexidine. Conclusions: The Ag+-Zn2+ atomic ratios of 1:9 and 1:12 demonstrated similar strong ability against E. faecalis biofilm on dentin but much lower cytotoxicity than 2% chlorhexidine. New medications containing optimum Ag+-Zn2+ atomic ratios higher than 1:6, such as 1:9 or 1:12, could be developed against E. faecalis infection in root canals of teeth or any other parts of human body.

Original languageEnglish (US)
Article number10
JournalJournal of Nanobiotechnology
Volume16
Issue number1
DOIs
StatePublished - Jan 31 2018

Fingerprint

Enterococcus faecalis
Biofilms
Dentin
Cytotoxicity
Chlorhexidine
Infection
Depolarization
Canals
Cell membranes
Membranes
Dental Pulp Cavity
Human Body
Membrane Potentials
Permeability
Tooth
Cell Membrane

Keywords

  • Antibacterial
  • Biofilm
  • Dentin
  • E. faecalis
  • Ion
  • Silver
  • Zinc

ASJC Scopus subject areas

  • Bioengineering
  • Medicine (miscellaneous)
  • Molecular Medicine
  • Biomedical Engineering
  • Applied Microbiology and Biotechnology
  • Pharmaceutical Science

Cite this

Synergistic mechanism of Ag+-Zn2+ in anti-bacterial activity against Enterococcus faecalis and its application against dentin infection. / Fan, Wei; Sun, Qing; Li, Yanyun; Tay, Franklin Chi Meng; Fan, Bing.

In: Journal of Nanobiotechnology, Vol. 16, No. 1, 10, 31.01.2018.

Research output: Contribution to journalArticle

@article{c667528fca5246559d7f36859d2828a0,
title = "Synergistic mechanism of Ag+-Zn2+ in anti-bacterial activity against Enterococcus faecalis and its application against dentin infection",
abstract = "Background: Ag+ and Zn2+ have already been used in combinations to obtain both enhanced antibacterial effect and low cytotoxicity. Despite this, it is still unclear how the Zn2+ co-works with Ag+ in the synergistic antibacterial activity. The main purposes of this study were to investigate the co-work pattern and optimum ratio between Ag+ and Zn2+ in their synergistic antibacterial activity against E. faecalis, the possible mechanisms behind this synergy and the primary application of optimum Ag+-Zn2+ co-work pattern against the E. faecalis biofilm on dentin. A serial of Ag+-Zn2+ atomic combination ratios were tested on both planktonic and biofilm-resident E. faecalis on dentin, their antibacterial efficiency was calculated and optimum ratio determined. And the cytotoxicity of various Ag+-Zn2+ atomic ratios was tested on MC3T3-E1 Cells. The role of Zn2+ in Ag+-Zn2+co-work was evaluated using a Zn2+ pretreatment study and membrane potential-permeability measurement. Results: The results showed that the synergistically promoted antibacterial effect of Ag+-Zn2+ combinations was Zn2+ amount-dependent with the 1:9 and 1:12 Ag+-Zn2+ atomic ratios showing the most powerful ability against both planktonic and biofilm-resident E. faecalis. This co-work could likely be attributed to the depolarization of E. faecalis cell membrane by the addition of Zn2+. The cytotoxicity of the Ag+-Zn2+ atomic ratios of 1:9 and 1:12 was much lower than 2{\%} chlorhexidine. Conclusions: The Ag+-Zn2+ atomic ratios of 1:9 and 1:12 demonstrated similar strong ability against E. faecalis biofilm on dentin but much lower cytotoxicity than 2{\%} chlorhexidine. New medications containing optimum Ag+-Zn2+ atomic ratios higher than 1:6, such as 1:9 or 1:12, could be developed against E. faecalis infection in root canals of teeth or any other parts of human body.",
keywords = "Antibacterial, Biofilm, Dentin, E. faecalis, Ion, Silver, Zinc",
author = "Wei Fan and Qing Sun and Yanyun Li and Tay, {Franklin Chi Meng} and Bing Fan",
year = "2018",
month = "1",
day = "31",
doi = "10.1186/s12951-018-0336-3",
language = "English (US)",
volume = "16",
journal = "Journal of Nanobiotechnology",
issn = "1477-3155",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Synergistic mechanism of Ag+-Zn2+ in anti-bacterial activity against Enterococcus faecalis and its application against dentin infection

AU - Fan, Wei

AU - Sun, Qing

AU - Li, Yanyun

AU - Tay, Franklin Chi Meng

AU - Fan, Bing

PY - 2018/1/31

Y1 - 2018/1/31

N2 - Background: Ag+ and Zn2+ have already been used in combinations to obtain both enhanced antibacterial effect and low cytotoxicity. Despite this, it is still unclear how the Zn2+ co-works with Ag+ in the synergistic antibacterial activity. The main purposes of this study were to investigate the co-work pattern and optimum ratio between Ag+ and Zn2+ in their synergistic antibacterial activity against E. faecalis, the possible mechanisms behind this synergy and the primary application of optimum Ag+-Zn2+ co-work pattern against the E. faecalis biofilm on dentin. A serial of Ag+-Zn2+ atomic combination ratios were tested on both planktonic and biofilm-resident E. faecalis on dentin, their antibacterial efficiency was calculated and optimum ratio determined. And the cytotoxicity of various Ag+-Zn2+ atomic ratios was tested on MC3T3-E1 Cells. The role of Zn2+ in Ag+-Zn2+co-work was evaluated using a Zn2+ pretreatment study and membrane potential-permeability measurement. Results: The results showed that the synergistically promoted antibacterial effect of Ag+-Zn2+ combinations was Zn2+ amount-dependent with the 1:9 and 1:12 Ag+-Zn2+ atomic ratios showing the most powerful ability against both planktonic and biofilm-resident E. faecalis. This co-work could likely be attributed to the depolarization of E. faecalis cell membrane by the addition of Zn2+. The cytotoxicity of the Ag+-Zn2+ atomic ratios of 1:9 and 1:12 was much lower than 2% chlorhexidine. Conclusions: The Ag+-Zn2+ atomic ratios of 1:9 and 1:12 demonstrated similar strong ability against E. faecalis biofilm on dentin but much lower cytotoxicity than 2% chlorhexidine. New medications containing optimum Ag+-Zn2+ atomic ratios higher than 1:6, such as 1:9 or 1:12, could be developed against E. faecalis infection in root canals of teeth or any other parts of human body.

AB - Background: Ag+ and Zn2+ have already been used in combinations to obtain both enhanced antibacterial effect and low cytotoxicity. Despite this, it is still unclear how the Zn2+ co-works with Ag+ in the synergistic antibacterial activity. The main purposes of this study were to investigate the co-work pattern and optimum ratio between Ag+ and Zn2+ in their synergistic antibacterial activity against E. faecalis, the possible mechanisms behind this synergy and the primary application of optimum Ag+-Zn2+ co-work pattern against the E. faecalis biofilm on dentin. A serial of Ag+-Zn2+ atomic combination ratios were tested on both planktonic and biofilm-resident E. faecalis on dentin, their antibacterial efficiency was calculated and optimum ratio determined. And the cytotoxicity of various Ag+-Zn2+ atomic ratios was tested on MC3T3-E1 Cells. The role of Zn2+ in Ag+-Zn2+co-work was evaluated using a Zn2+ pretreatment study and membrane potential-permeability measurement. Results: The results showed that the synergistically promoted antibacterial effect of Ag+-Zn2+ combinations was Zn2+ amount-dependent with the 1:9 and 1:12 Ag+-Zn2+ atomic ratios showing the most powerful ability against both planktonic and biofilm-resident E. faecalis. This co-work could likely be attributed to the depolarization of E. faecalis cell membrane by the addition of Zn2+. The cytotoxicity of the Ag+-Zn2+ atomic ratios of 1:9 and 1:12 was much lower than 2% chlorhexidine. Conclusions: The Ag+-Zn2+ atomic ratios of 1:9 and 1:12 demonstrated similar strong ability against E. faecalis biofilm on dentin but much lower cytotoxicity than 2% chlorhexidine. New medications containing optimum Ag+-Zn2+ atomic ratios higher than 1:6, such as 1:9 or 1:12, could be developed against E. faecalis infection in root canals of teeth or any other parts of human body.

KW - Antibacterial

KW - Biofilm

KW - Dentin

KW - E. faecalis

KW - Ion

KW - Silver

KW - Zinc

UR - http://www.scopus.com/inward/record.url?scp=85041430772&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85041430772&partnerID=8YFLogxK

U2 - 10.1186/s12951-018-0336-3

DO - 10.1186/s12951-018-0336-3

M3 - Article

C2 - 29386060

AN - SCOPUS:85041430772

VL - 16

JO - Journal of Nanobiotechnology

JF - Journal of Nanobiotechnology

SN - 1477-3155

IS - 1

M1 - 10

ER -