Tadalafil, a phosphodiesterase inhibitor protects stem cells over longer period against hypoxia/reoxygenation injury through STAT3/PKG-I signaling

Sanjay Kumar, Muhammad Ashraf

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

Pharmacological preconditioning (PC) with tadalafil, a PDE5A inhibitor, enhances protein kinase G-1 (PKG-I) activity, resulting in stem cell survival. Protection by PC had two different phases, early (2 h) and late (24 h). However, the mechanism of protection during these phases remained grossly unknown. Mesenchymal stem cells (MSCs) from adult male Fischer-344 rats were cultured and pretreated with tadalafil (100 μM) for an hour and subjected to 2 h of hypoxia (1% O2), followed by reoxygenation (HR: in vitro model mimicking ischemia/reperfusion). We observed (i) increased MSC survival with reduced cell cytotoxicity as revealed by low lactate dehydrogenase release and trypan blue staining, respectively, in tadalafil-treated cells upon HR; (ii) decrease in TUNEL positivity as well as caspase activity; (iii) an increase in pAkt/Akt, iNOS, eNOS, and pGSK3β/GSK3β during the early protection phase of PC, and this protection seemed to be a spontaneous adaptive response of MSCs against HR and was independent of tadalafil, whereas an increase in Bcl2/Bax was tadalafil dependent; and (iv) during the late phase, we observed phosphorylation of STAT3 at serine727, leading to its entry inside the nucleus and binding onto the promoter of PKG-I by three-fold (P<0.05). In conclusion, an increase in Bcl2/Bax during the early phase and transcriptional upregulation of PKG-I by STAT3 during the late phase were responsible for stem cell protection by tadalafil against ischemic injury.

Original languageEnglish (US)
Pages (from-to)1332-1341
Number of pages10
JournalStem Cells and Development
Volume24
Issue number11
DOIs
StatePublished - Jun 1 2015

Fingerprint

Phosphodiesterase Inhibitors
Stem Cells
Wounds and Injuries
Mesenchymal Stromal Cells
Cell Survival
Cyclic GMP-Dependent Protein Kinases
Cytoprotection
Trypan Blue
Inbred F344 Rats
In Situ Nick-End Labeling
Caspases
L-Lactate Dehydrogenase
Reperfusion
Tadalafil
Hypoxia
Up-Regulation
Ischemia
Phosphorylation
Pharmacology
Staining and Labeling

ASJC Scopus subject areas

  • Hematology
  • Developmental Biology
  • Cell Biology

Cite this

@article{35b74b94f06344e193552126b853c30c,
title = "Tadalafil, a phosphodiesterase inhibitor protects stem cells over longer period against hypoxia/reoxygenation injury through STAT3/PKG-I signaling",
abstract = "Pharmacological preconditioning (PC) with tadalafil, a PDE5A inhibitor, enhances protein kinase G-1 (PKG-I) activity, resulting in stem cell survival. Protection by PC had two different phases, early (2 h) and late (24 h). However, the mechanism of protection during these phases remained grossly unknown. Mesenchymal stem cells (MSCs) from adult male Fischer-344 rats were cultured and pretreated with tadalafil (100 μM) for an hour and subjected to 2 h of hypoxia (1{\%} O2), followed by reoxygenation (HR: in vitro model mimicking ischemia/reperfusion). We observed (i) increased MSC survival with reduced cell cytotoxicity as revealed by low lactate dehydrogenase release and trypan blue staining, respectively, in tadalafil-treated cells upon HR; (ii) decrease in TUNEL positivity as well as caspase activity; (iii) an increase in pAkt/Akt, iNOS, eNOS, and pGSK3β/GSK3β during the early protection phase of PC, and this protection seemed to be a spontaneous adaptive response of MSCs against HR and was independent of tadalafil, whereas an increase in Bcl2/Bax was tadalafil dependent; and (iv) during the late phase, we observed phosphorylation of STAT3 at serine727, leading to its entry inside the nucleus and binding onto the promoter of PKG-I by three-fold (P<0.05). In conclusion, an increase in Bcl2/Bax during the early phase and transcriptional upregulation of PKG-I by STAT3 during the late phase were responsible for stem cell protection by tadalafil against ischemic injury.",
author = "Sanjay Kumar and Muhammad Ashraf",
year = "2015",
month = "6",
day = "1",
doi = "10.1089/scd.2014.0288",
language = "English (US)",
volume = "24",
pages = "1332--1341",
journal = "Stem Cells and Development",
issn = "1547-3287",
publisher = "Mary Ann Liebert Inc.",
number = "11",

}

TY - JOUR

T1 - Tadalafil, a phosphodiesterase inhibitor protects stem cells over longer period against hypoxia/reoxygenation injury through STAT3/PKG-I signaling

AU - Kumar, Sanjay

AU - Ashraf, Muhammad

PY - 2015/6/1

Y1 - 2015/6/1

N2 - Pharmacological preconditioning (PC) with tadalafil, a PDE5A inhibitor, enhances protein kinase G-1 (PKG-I) activity, resulting in stem cell survival. Protection by PC had two different phases, early (2 h) and late (24 h). However, the mechanism of protection during these phases remained grossly unknown. Mesenchymal stem cells (MSCs) from adult male Fischer-344 rats were cultured and pretreated with tadalafil (100 μM) for an hour and subjected to 2 h of hypoxia (1% O2), followed by reoxygenation (HR: in vitro model mimicking ischemia/reperfusion). We observed (i) increased MSC survival with reduced cell cytotoxicity as revealed by low lactate dehydrogenase release and trypan blue staining, respectively, in tadalafil-treated cells upon HR; (ii) decrease in TUNEL positivity as well as caspase activity; (iii) an increase in pAkt/Akt, iNOS, eNOS, and pGSK3β/GSK3β during the early protection phase of PC, and this protection seemed to be a spontaneous adaptive response of MSCs against HR and was independent of tadalafil, whereas an increase in Bcl2/Bax was tadalafil dependent; and (iv) during the late phase, we observed phosphorylation of STAT3 at serine727, leading to its entry inside the nucleus and binding onto the promoter of PKG-I by three-fold (P<0.05). In conclusion, an increase in Bcl2/Bax during the early phase and transcriptional upregulation of PKG-I by STAT3 during the late phase were responsible for stem cell protection by tadalafil against ischemic injury.

AB - Pharmacological preconditioning (PC) with tadalafil, a PDE5A inhibitor, enhances protein kinase G-1 (PKG-I) activity, resulting in stem cell survival. Protection by PC had two different phases, early (2 h) and late (24 h). However, the mechanism of protection during these phases remained grossly unknown. Mesenchymal stem cells (MSCs) from adult male Fischer-344 rats were cultured and pretreated with tadalafil (100 μM) for an hour and subjected to 2 h of hypoxia (1% O2), followed by reoxygenation (HR: in vitro model mimicking ischemia/reperfusion). We observed (i) increased MSC survival with reduced cell cytotoxicity as revealed by low lactate dehydrogenase release and trypan blue staining, respectively, in tadalafil-treated cells upon HR; (ii) decrease in TUNEL positivity as well as caspase activity; (iii) an increase in pAkt/Akt, iNOS, eNOS, and pGSK3β/GSK3β during the early protection phase of PC, and this protection seemed to be a spontaneous adaptive response of MSCs against HR and was independent of tadalafil, whereas an increase in Bcl2/Bax was tadalafil dependent; and (iv) during the late phase, we observed phosphorylation of STAT3 at serine727, leading to its entry inside the nucleus and binding onto the promoter of PKG-I by three-fold (P<0.05). In conclusion, an increase in Bcl2/Bax during the early phase and transcriptional upregulation of PKG-I by STAT3 during the late phase were responsible for stem cell protection by tadalafil against ischemic injury.

UR - http://www.scopus.com/inward/record.url?scp=84929581820&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84929581820&partnerID=8YFLogxK

U2 - 10.1089/scd.2014.0288

DO - 10.1089/scd.2014.0288

M3 - Article

VL - 24

SP - 1332

EP - 1341

JO - Stem Cells and Development

JF - Stem Cells and Development

SN - 1547-3287

IS - 11

ER -