Taurine modulates arginine vasopressin-mediated regulation of renal function

Mahmood S. Mozaffari, David Schaffer

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Taurine has been implicated in the regulation of arginine vasopressin (AVP) secretion, and we have previously shown altered renal excretory function in the taurine-depleted rat. To further elucidate the role of taurine in AVP-mediated renal responses, the effects of an antagonist for renal AVP receptors were examined in four groups of conscious rats: control, taurine-supplemented, taurine-depleted, and taurine-repleted. Control and taurine-supplemented rats displayed similar and significant AVP receptor antagonist-induced elevations in fluid excretion, sodium excretion, and free water clearance but a marked reduction in urine osmolality. These effects are consistent with inhibition of endogenous AVP activity. By contrast, in the taurine-depleted rats, the magnitude and the time course of drug-induced renal excretory responses lagged behind those of the control and taurine-supplemented groups. Further, baseline urine osmolality was significantly higher in the taurine-depleted compared with the control or taurine-supplemented groups. However, after administration of the antagonist, taurine-depleted rats manifested a delayed but more marked reduction in urine osmolality, thereby eliminating the baseline differential that existed between the taurine-depleted rats and control or taurine-supplemented groups. Consistent with these observations, plasma AVP was significantly increased in the taurine-depleted compared with the control rats. Interestingly, taurine repletion shifted all responses closer to the control group. Analysis of the data suggests that the effect of the antagonist on renal excretory function is related primarily to altered tubular reabsorption activity. These observations suggest that taurine modulates renal function, and, thereby, body fluid homeostasis, through an AVP-dependent mechanism.

Original languageEnglish (US)
Pages (from-to)742-750
Number of pages9
JournalJournal of Cardiovascular Pharmacology
Volume37
Issue number6
DOIs
StatePublished - Jun 7 2001

Fingerprint

Arginine Vasopressin
Taurine
Kidney
Osmolar Concentration
Vasopressin Receptors
Urine
Body Fluids

Keywords

  • Diuresis
  • Natriuresis
  • Osmolality
  • Rat
  • Taurine
  • Vasopressin antagonist

ASJC Scopus subject areas

  • Pharmacology
  • Cardiology and Cardiovascular Medicine

Cite this

Taurine modulates arginine vasopressin-mediated regulation of renal function. / Mozaffari, Mahmood S.; Schaffer, David.

In: Journal of Cardiovascular Pharmacology, Vol. 37, No. 6, 07.06.2001, p. 742-750.

Research output: Contribution to journalArticle

@article{fb9b291f381647c7b191c4d7c9d062c5,
title = "Taurine modulates arginine vasopressin-mediated regulation of renal function",
abstract = "Taurine has been implicated in the regulation of arginine vasopressin (AVP) secretion, and we have previously shown altered renal excretory function in the taurine-depleted rat. To further elucidate the role of taurine in AVP-mediated renal responses, the effects of an antagonist for renal AVP receptors were examined in four groups of conscious rats: control, taurine-supplemented, taurine-depleted, and taurine-repleted. Control and taurine-supplemented rats displayed similar and significant AVP receptor antagonist-induced elevations in fluid excretion, sodium excretion, and free water clearance but a marked reduction in urine osmolality. These effects are consistent with inhibition of endogenous AVP activity. By contrast, in the taurine-depleted rats, the magnitude and the time course of drug-induced renal excretory responses lagged behind those of the control and taurine-supplemented groups. Further, baseline urine osmolality was significantly higher in the taurine-depleted compared with the control or taurine-supplemented groups. However, after administration of the antagonist, taurine-depleted rats manifested a delayed but more marked reduction in urine osmolality, thereby eliminating the baseline differential that existed between the taurine-depleted rats and control or taurine-supplemented groups. Consistent with these observations, plasma AVP was significantly increased in the taurine-depleted compared with the control rats. Interestingly, taurine repletion shifted all responses closer to the control group. Analysis of the data suggests that the effect of the antagonist on renal excretory function is related primarily to altered tubular reabsorption activity. These observations suggest that taurine modulates renal function, and, thereby, body fluid homeostasis, through an AVP-dependent mechanism.",
keywords = "Diuresis, Natriuresis, Osmolality, Rat, Taurine, Vasopressin antagonist",
author = "Mozaffari, {Mahmood S.} and David Schaffer",
year = "2001",
month = "6",
day = "7",
doi = "10.1097/00005344-200106000-00012",
language = "English (US)",
volume = "37",
pages = "742--750",
journal = "Journal of Cardiovascular Pharmacology",
issn = "0160-2446",
publisher = "Lippincott Williams and Wilkins",
number = "6",

}

TY - JOUR

T1 - Taurine modulates arginine vasopressin-mediated regulation of renal function

AU - Mozaffari, Mahmood S.

AU - Schaffer, David

PY - 2001/6/7

Y1 - 2001/6/7

N2 - Taurine has been implicated in the regulation of arginine vasopressin (AVP) secretion, and we have previously shown altered renal excretory function in the taurine-depleted rat. To further elucidate the role of taurine in AVP-mediated renal responses, the effects of an antagonist for renal AVP receptors were examined in four groups of conscious rats: control, taurine-supplemented, taurine-depleted, and taurine-repleted. Control and taurine-supplemented rats displayed similar and significant AVP receptor antagonist-induced elevations in fluid excretion, sodium excretion, and free water clearance but a marked reduction in urine osmolality. These effects are consistent with inhibition of endogenous AVP activity. By contrast, in the taurine-depleted rats, the magnitude and the time course of drug-induced renal excretory responses lagged behind those of the control and taurine-supplemented groups. Further, baseline urine osmolality was significantly higher in the taurine-depleted compared with the control or taurine-supplemented groups. However, after administration of the antagonist, taurine-depleted rats manifested a delayed but more marked reduction in urine osmolality, thereby eliminating the baseline differential that existed between the taurine-depleted rats and control or taurine-supplemented groups. Consistent with these observations, plasma AVP was significantly increased in the taurine-depleted compared with the control rats. Interestingly, taurine repletion shifted all responses closer to the control group. Analysis of the data suggests that the effect of the antagonist on renal excretory function is related primarily to altered tubular reabsorption activity. These observations suggest that taurine modulates renal function, and, thereby, body fluid homeostasis, through an AVP-dependent mechanism.

AB - Taurine has been implicated in the regulation of arginine vasopressin (AVP) secretion, and we have previously shown altered renal excretory function in the taurine-depleted rat. To further elucidate the role of taurine in AVP-mediated renal responses, the effects of an antagonist for renal AVP receptors were examined in four groups of conscious rats: control, taurine-supplemented, taurine-depleted, and taurine-repleted. Control and taurine-supplemented rats displayed similar and significant AVP receptor antagonist-induced elevations in fluid excretion, sodium excretion, and free water clearance but a marked reduction in urine osmolality. These effects are consistent with inhibition of endogenous AVP activity. By contrast, in the taurine-depleted rats, the magnitude and the time course of drug-induced renal excretory responses lagged behind those of the control and taurine-supplemented groups. Further, baseline urine osmolality was significantly higher in the taurine-depleted compared with the control or taurine-supplemented groups. However, after administration of the antagonist, taurine-depleted rats manifested a delayed but more marked reduction in urine osmolality, thereby eliminating the baseline differential that existed between the taurine-depleted rats and control or taurine-supplemented groups. Consistent with these observations, plasma AVP was significantly increased in the taurine-depleted compared with the control rats. Interestingly, taurine repletion shifted all responses closer to the control group. Analysis of the data suggests that the effect of the antagonist on renal excretory function is related primarily to altered tubular reabsorption activity. These observations suggest that taurine modulates renal function, and, thereby, body fluid homeostasis, through an AVP-dependent mechanism.

KW - Diuresis

KW - Natriuresis

KW - Osmolality

KW - Rat

KW - Taurine

KW - Vasopressin antagonist

UR - http://www.scopus.com/inward/record.url?scp=0035001293&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035001293&partnerID=8YFLogxK

U2 - 10.1097/00005344-200106000-00012

DO - 10.1097/00005344-200106000-00012

M3 - Article

C2 - 11392471

AN - SCOPUS:0035001293

VL - 37

SP - 742

EP - 750

JO - Journal of Cardiovascular Pharmacology

JF - Journal of Cardiovascular Pharmacology

SN - 0160-2446

IS - 6

ER -