TY - JOUR
T1 - Temporal hemodynamic changes in a female mouse model of systemic lupus erythematosus
AU - Dent, Elena L.
AU - Taylor, Erin B.
AU - Sasser, Jennifer M.
AU - Ryan, Michael J.
N1 - Funding Information:
The authors thank the University of Mississippi Medical Center (UMMC) Analytic Assay Core, UMMC Department of Physiology and Biophysics, UMMC Histology Core, and Dr. M. Garrett and Dr. W. Wu (UMMC Pharmacology and Toxicology). This work was supported by Veterans Administration Merit Award BX002604-01A2 (to M. J. Ryan) and National Institutes of Health (NIH) Grants PO1-HL-051971 and P20-GM-104357 to the University of Mississippi Medical Center (UMMC) Department of Physiology and Biophysics. This work was also supported by NIH Grants HL-134711 (to J. M. Sasser) and HL-137673 (to M. Garrett) in UMMC Physiology and Toxicology. Flow cytometry experiments were performed at the UMMC Cancer Center and Research Institute Flow Cytometry Core Facility.
Funding Information:
This work was supported by Veterans Administration Merit Award BX002604-01A2 (to M. J. Ryan) and National Institutes of Health (NIH) Grants PO1-HL-051971 and P20-GM-104357 to the University of Mississippi Medical Center (UMMC) Department of Physiology and Biophysics. This work was also supported by NIH Grants HL-134711 (to J. M. Sasser) and HL-137673 (to M. Garrett) in UMMC Physiology and Toxicology. Flow cytometry experiments were performed at the UMMC Cancer Center and Research Institute Flow Cytometry Core Facility.
Publisher Copyright:
© 2020 American Physiological Society. All rights reserved.
PY - 2020/5
Y1 - 2020/5
N2 - Systemic lupus erythematosus (SLE) is a chronic multisystem autoimmune disease characterized by circulating autoantibodies, prevalent hypertension, renal injury, and cardiovascular disease. Onset of the disease often occurs in young women of childbearing age. Although kidney involvement is common to patients with SLE, little is known about temporal changes in renal hemodynamic function and its relationship to the pathogenesis of hypertension during autoimmune diseases. We hypothesized that the loss of immunological tolerance and subsequent production of autoantibodies in SLE leads to impaired renal hemodynamic function that precedes the development hypertension. Female NZBWF1 (SLE) mice and female NZW/LacJ (control) mice were instrumented with carotid artery and jugular vein catheters to determine mean arterial pressure (MAP) and glomerular filtration rate, respectively, at ages of 15, 20, 24, 28, 31, and 34 wk. In addition, urinary albumin excretion, blood urea nitrogen, circulating autoantibodies, and glomerulosclerosis were assessed at each age. Levels of circulating autoantibodies are increased between 24 and 28 wk of age in NZBWF1 mice and were significantly greater than in control mice. Glomerular filtration rate was significantly increased at 28 wk of age in NZBWF1 mice followed by a sharp decline at 34 wk of age. NZBWF1 mice had an increase in MAP that occurred by 34 wk of age. These data show that changes in circulating autoantibodies, renal hemodynamic function, and glomerular injury occur in NZBWF1 mice before changes in MAP, suggesting an important mechanistic role for autoimmunity to directly impair renal hemodynamic function and promote the development of hypertension.
AB - Systemic lupus erythematosus (SLE) is a chronic multisystem autoimmune disease characterized by circulating autoantibodies, prevalent hypertension, renal injury, and cardiovascular disease. Onset of the disease often occurs in young women of childbearing age. Although kidney involvement is common to patients with SLE, little is known about temporal changes in renal hemodynamic function and its relationship to the pathogenesis of hypertension during autoimmune diseases. We hypothesized that the loss of immunological tolerance and subsequent production of autoantibodies in SLE leads to impaired renal hemodynamic function that precedes the development hypertension. Female NZBWF1 (SLE) mice and female NZW/LacJ (control) mice were instrumented with carotid artery and jugular vein catheters to determine mean arterial pressure (MAP) and glomerular filtration rate, respectively, at ages of 15, 20, 24, 28, 31, and 34 wk. In addition, urinary albumin excretion, blood urea nitrogen, circulating autoantibodies, and glomerulosclerosis were assessed at each age. Levels of circulating autoantibodies are increased between 24 and 28 wk of age in NZBWF1 mice and were significantly greater than in control mice. Glomerular filtration rate was significantly increased at 28 wk of age in NZBWF1 mice followed by a sharp decline at 34 wk of age. NZBWF1 mice had an increase in MAP that occurred by 34 wk of age. These data show that changes in circulating autoantibodies, renal hemodynamic function, and glomerular injury occur in NZBWF1 mice before changes in MAP, suggesting an important mechanistic role for autoimmunity to directly impair renal hemodynamic function and promote the development of hypertension.
KW - Autoantibodies
KW - Autoimmunity
KW - Hypertension
KW - Renal hemodynamics
KW - Systemic lupus erythematosus
UR - http://www.scopus.com/inward/record.url?scp=85083544150&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083544150&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.00598.2019
DO - 10.1152/ajprenal.00598.2019
M3 - Article
C2 - 32150445
AN - SCOPUS:85083544150
SN - 0363-6135
VL - 318
SP - F1074-F1085
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 5
ER -