The complexity of leader election in diameter-two networks

Soumyottam Chatterjee, Gopal Pandurangan, Peter Robinson

Research output: Contribution to journalArticlepeer-review

Abstract

This paper focuses on studying the message complexity of implicit leader election in synchronous distributed networks of diameter two. Kutten et al. (J ACM 62(1):7:1–7:27, 2015) showed a fundamental lower bound of Ω(m) (m is the number of edges in the network) on the message complexity of (implicit) leader election that applied also to Monte Carlo randomized algorithms with constant success probability; this lower bound applies for graphs that have diameter at least three. On the other hand, for complete graphs (i.e., graphs with diameter one), Kutten et al. (Theor Comput Sci 561(Part B):134–143, 2015) established a tight bound of Θ~(n) on the message complexity of randomized leader election (n is the number of nodes in the network). For graphs of diameter two, the complexity was not known. In this paper, we settle this complexity by showing a tight bound of Θ~ (n) on the message complexity of leader election in diameter-two networks. We first give a simple randomized Monte-Carlo leader election algorithm that with high probability (i.e., probability at least 1 - n- c, for some fixed positive constant c) succeeds and uses O(nlog 3n) messages and runs in O(1) rounds; this algorithm works without knowledge of n (and hence needs no global knowledge). We then show that any algorithm (even Monte Carlo randomized algorithms with large enough constant success probability) needs Ω(n) messages (even when n is known), regardless of the number of rounds. We also present an O(nlog n) message deterministic algorithm that takes O(log n) rounds (but needs knowledge of n); we show that this message complexity is tight for deterministic algorithms. Together with the two previous results of Kutten et al., our results fully characterize the message complexity of leader election vis-à-vis the graph diameter.

Original languageEnglish (US)
Pages (from-to)189-205
Number of pages17
JournalDistributed Computing
Volume33
Issue number2
DOIs
StatePublished - Apr 1 2020
Externally publishedYes

Keywords

  • Distributed algorithm
  • Leader election
  • Lower bound
  • Message complexity
  • Randomized algorithm
  • Time complexity

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Hardware and Architecture
  • Computer Networks and Communications
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'The complexity of leader election in diameter-two networks'. Together they form a unique fingerprint.

Cite this