The influence of hygroscopic expansion of resin-based restorative materials on artificial gap reduction

Cui Huang, Lee Hoi Kei, Stephen H.Y. Wei, Gary S.P. Cheung, Franklin Chi Meng Tay, David H. Pashley

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

Purpose: This study compared the effect of water sorption on the extent of marginal gap reduction in two resin-modified glass-ionomer cements (RMGICs), two giomers, two compomers, and two resin composites over a twelve-week storage period. Materials and Methods: Artificial gaps were created in 160 borosilicate glass cylinders. One-half of the internal surface of each cylinder was blocked out with wax and the other half was sandblasted. The bonding surface was further treated with 4% hydrofluoric acid, rinsed, and then coated with silane. After removal of the wax, one coat of dentin adhesive was applied to the silane-treated surface of the cylinder, briefly air dried and light cured. Eight light-cured restorative materials were placed incrementally: Vitremer (V), Fuji II LC (FJ), Beautifil (B), Reactmer Paste (R), Compoglass F (C), F2000 (F), Filtek Z250 (Z), and Tetric-Ceram (T). For each material, ten specimens were stored in deionized water (W), and ten (control) in nonaqueous silicone fluid (0) at 37°C. The dimension of the same maximum gap created in each specimen was repeatedly measured at 0, 1, 2, 4, 6, 8, 10, and 12 weeks. Results: R-W exhibited extensive hygroscopic expansion that resulted in cracking of 40% of glass cylinders after the 2nd week and 70% after the 4th week. One-way ANOVA of the other seven water groups showed significant differences (p < 0.001) among gap widths measured at different time intervals in V-W, FJ-W, C-W, F-W. Both RMGICs had the most significant gap reduction during the first week (p < 0.001). Both compomers exhibited delayed water-sorption characteristics, with more significant gap reduction observed in C-W. B-W was similar to the two resin composites Z-W and T-W and exhibited the least gap reduction. After the first week, there were no significant differences in the percentage reduction in marginal gaps for any of the groups (p > 0.05). Conclusion: Marginal gap reduction that results from water sorption is more extensive and rapid in RMG-ICs, followed by compomers, whereas composites are relatively stable. Reactmer Paste exhibits rapid and extensive expansion and should probably be avoided in tooth preparations that involve thin unsupported enamel.

Original languageEnglish (US)
Pages (from-to)61-71
Number of pages11
JournalJournal of Adhesive Dentistry
Volume4
Issue number1
StatePublished - Mar 1 2002

Fingerprint

Compomers
Silanes
Water
Waxes
Glass
Tooth Preparation
Hydrofluoric Acid
Glass Ionomer Cements
Light
Composite Resins
Silicones
Dentin
Dental Enamel
Adhesives
Analysis of Variance
Air
reactmer paste

ASJC Scopus subject areas

  • Orthodontics
  • Oral Surgery
  • Periodontics

Cite this

Huang, C., Kei, L. H., Wei, S. H. Y., Cheung, G. S. P., Tay, F. C. M., & Pashley, D. H. (2002). The influence of hygroscopic expansion of resin-based restorative materials on artificial gap reduction. Journal of Adhesive Dentistry, 4(1), 61-71.

The influence of hygroscopic expansion of resin-based restorative materials on artificial gap reduction. / Huang, Cui; Kei, Lee Hoi; Wei, Stephen H.Y.; Cheung, Gary S.P.; Tay, Franklin Chi Meng; Pashley, David H.

In: Journal of Adhesive Dentistry, Vol. 4, No. 1, 01.03.2002, p. 61-71.

Research output: Contribution to journalArticle

Huang, Cui ; Kei, Lee Hoi ; Wei, Stephen H.Y. ; Cheung, Gary S.P. ; Tay, Franklin Chi Meng ; Pashley, David H. / The influence of hygroscopic expansion of resin-based restorative materials on artificial gap reduction. In: Journal of Adhesive Dentistry. 2002 ; Vol. 4, No. 1. pp. 61-71.
@article{0904ff64b6e84a9595697c4ab54aba7b,
title = "The influence of hygroscopic expansion of resin-based restorative materials on artificial gap reduction",
abstract = "Purpose: This study compared the effect of water sorption on the extent of marginal gap reduction in two resin-modified glass-ionomer cements (RMGICs), two giomers, two compomers, and two resin composites over a twelve-week storage period. Materials and Methods: Artificial gaps were created in 160 borosilicate glass cylinders. One-half of the internal surface of each cylinder was blocked out with wax and the other half was sandblasted. The bonding surface was further treated with 4{\%} hydrofluoric acid, rinsed, and then coated with silane. After removal of the wax, one coat of dentin adhesive was applied to the silane-treated surface of the cylinder, briefly air dried and light cured. Eight light-cured restorative materials were placed incrementally: Vitremer (V), Fuji II LC (FJ), Beautifil (B), Reactmer Paste (R), Compoglass F (C), F2000 (F), Filtek Z250 (Z), and Tetric-Ceram (T). For each material, ten specimens were stored in deionized water (W), and ten (control) in nonaqueous silicone fluid (0) at 37°C. The dimension of the same maximum gap created in each specimen was repeatedly measured at 0, 1, 2, 4, 6, 8, 10, and 12 weeks. Results: R-W exhibited extensive hygroscopic expansion that resulted in cracking of 40{\%} of glass cylinders after the 2nd week and 70{\%} after the 4th week. One-way ANOVA of the other seven water groups showed significant differences (p < 0.001) among gap widths measured at different time intervals in V-W, FJ-W, C-W, F-W. Both RMGICs had the most significant gap reduction during the first week (p < 0.001). Both compomers exhibited delayed water-sorption characteristics, with more significant gap reduction observed in C-W. B-W was similar to the two resin composites Z-W and T-W and exhibited the least gap reduction. After the first week, there were no significant differences in the percentage reduction in marginal gaps for any of the groups (p > 0.05). Conclusion: Marginal gap reduction that results from water sorption is more extensive and rapid in RMG-ICs, followed by compomers, whereas composites are relatively stable. Reactmer Paste exhibits rapid and extensive expansion and should probably be avoided in tooth preparations that involve thin unsupported enamel.",
author = "Cui Huang and Kei, {Lee Hoi} and Wei, {Stephen H.Y.} and Cheung, {Gary S.P.} and Tay, {Franklin Chi Meng} and Pashley, {David H.}",
year = "2002",
month = "3",
day = "1",
language = "English (US)",
volume = "4",
pages = "61--71",
journal = "The journal of adhesive dentistry",
issn = "1461-5185",
publisher = "Quintessence Publishing Company",
number = "1",

}

TY - JOUR

T1 - The influence of hygroscopic expansion of resin-based restorative materials on artificial gap reduction

AU - Huang, Cui

AU - Kei, Lee Hoi

AU - Wei, Stephen H.Y.

AU - Cheung, Gary S.P.

AU - Tay, Franklin Chi Meng

AU - Pashley, David H.

PY - 2002/3/1

Y1 - 2002/3/1

N2 - Purpose: This study compared the effect of water sorption on the extent of marginal gap reduction in two resin-modified glass-ionomer cements (RMGICs), two giomers, two compomers, and two resin composites over a twelve-week storage period. Materials and Methods: Artificial gaps were created in 160 borosilicate glass cylinders. One-half of the internal surface of each cylinder was blocked out with wax and the other half was sandblasted. The bonding surface was further treated with 4% hydrofluoric acid, rinsed, and then coated with silane. After removal of the wax, one coat of dentin adhesive was applied to the silane-treated surface of the cylinder, briefly air dried and light cured. Eight light-cured restorative materials were placed incrementally: Vitremer (V), Fuji II LC (FJ), Beautifil (B), Reactmer Paste (R), Compoglass F (C), F2000 (F), Filtek Z250 (Z), and Tetric-Ceram (T). For each material, ten specimens were stored in deionized water (W), and ten (control) in nonaqueous silicone fluid (0) at 37°C. The dimension of the same maximum gap created in each specimen was repeatedly measured at 0, 1, 2, 4, 6, 8, 10, and 12 weeks. Results: R-W exhibited extensive hygroscopic expansion that resulted in cracking of 40% of glass cylinders after the 2nd week and 70% after the 4th week. One-way ANOVA of the other seven water groups showed significant differences (p < 0.001) among gap widths measured at different time intervals in V-W, FJ-W, C-W, F-W. Both RMGICs had the most significant gap reduction during the first week (p < 0.001). Both compomers exhibited delayed water-sorption characteristics, with more significant gap reduction observed in C-W. B-W was similar to the two resin composites Z-W and T-W and exhibited the least gap reduction. After the first week, there were no significant differences in the percentage reduction in marginal gaps for any of the groups (p > 0.05). Conclusion: Marginal gap reduction that results from water sorption is more extensive and rapid in RMG-ICs, followed by compomers, whereas composites are relatively stable. Reactmer Paste exhibits rapid and extensive expansion and should probably be avoided in tooth preparations that involve thin unsupported enamel.

AB - Purpose: This study compared the effect of water sorption on the extent of marginal gap reduction in two resin-modified glass-ionomer cements (RMGICs), two giomers, two compomers, and two resin composites over a twelve-week storage period. Materials and Methods: Artificial gaps were created in 160 borosilicate glass cylinders. One-half of the internal surface of each cylinder was blocked out with wax and the other half was sandblasted. The bonding surface was further treated with 4% hydrofluoric acid, rinsed, and then coated with silane. After removal of the wax, one coat of dentin adhesive was applied to the silane-treated surface of the cylinder, briefly air dried and light cured. Eight light-cured restorative materials were placed incrementally: Vitremer (V), Fuji II LC (FJ), Beautifil (B), Reactmer Paste (R), Compoglass F (C), F2000 (F), Filtek Z250 (Z), and Tetric-Ceram (T). For each material, ten specimens were stored in deionized water (W), and ten (control) in nonaqueous silicone fluid (0) at 37°C. The dimension of the same maximum gap created in each specimen was repeatedly measured at 0, 1, 2, 4, 6, 8, 10, and 12 weeks. Results: R-W exhibited extensive hygroscopic expansion that resulted in cracking of 40% of glass cylinders after the 2nd week and 70% after the 4th week. One-way ANOVA of the other seven water groups showed significant differences (p < 0.001) among gap widths measured at different time intervals in V-W, FJ-W, C-W, F-W. Both RMGICs had the most significant gap reduction during the first week (p < 0.001). Both compomers exhibited delayed water-sorption characteristics, with more significant gap reduction observed in C-W. B-W was similar to the two resin composites Z-W and T-W and exhibited the least gap reduction. After the first week, there were no significant differences in the percentage reduction in marginal gaps for any of the groups (p > 0.05). Conclusion: Marginal gap reduction that results from water sorption is more extensive and rapid in RMG-ICs, followed by compomers, whereas composites are relatively stable. Reactmer Paste exhibits rapid and extensive expansion and should probably be avoided in tooth preparations that involve thin unsupported enamel.

UR - http://www.scopus.com/inward/record.url?scp=0036490755&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036490755&partnerID=8YFLogxK

M3 - Article

VL - 4

SP - 61

EP - 71

JO - The journal of adhesive dentistry

JF - The journal of adhesive dentistry

SN - 1461-5185

IS - 1

ER -