The role of RhoA and cytoskeleton in myofibroblast transformation in hyperoxic lung fibrosis

Jixiang Ni, Zheng Dong, Weihong Han, Dmitry Yuryevich Kondrikov, Yunchao Su

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Myofibroblast transformation is a key process in the pathogenesis of lung fibrosis. We have previously reported that hyperoxia induces RhoA activation in HFL-1 lung fibroblasts and RhoA mediates collagen synthesis in hyperoxic lung fibrosis. In this study, we investigated the role of RhoA and actin cytoskeleton in hyperoxia-induced myofibroblast transformation. Exposure of HFL-1 lung fibroblasts to hyperoxia stimulated actin filament formation, shift of G-actin to F-actin, nuclear colocalization of myocardin-related transcription factor-A (MRTF-A), recruitment of MRTF-A to the α-smooth muscle actin (α-SMA) gene promoter, myofibroblast transformation, and collagen-I synthesis. Inhibition of RhoA by C3 transferase CT-04 or dominant-negative RhoA mutant T19N, and inhibition of ROCK by Y27632, prevented myofibroblast transformation and collagen-I synthesis. Moreover, inhibition of RhoA by CT-04 prevented hyperoxia-induced actin filament formation, shift of G-actin to F-actin, and nuclear colocalization of MRTF-A. In addition, disrupting actin filaments with cytochalasin D or scavenging reactive oxygen species (ROS) with tiron attenuated actin filament formation, nuclear colocalization of MRTF-A, myofibroblast transformation, and collagen-I synthesis. Furthermore, overexpression of constitutively active RhoA mutant Q63L or stabilization of actin filaments recapitulated the effects of hyperoxia on the actin cytoskeleton and nuclear colocalization of MRTF-A, myofibroblast transformation, and collagen-I synthesis. Interestingly, knocking down MRTF-A prevented hyperoxia-induced increase in the recruitment of MRTF-A to the serum response factor transcriptional complex on the α-SMA gene promoter, myofibroblast transformation, and collagen-I synthesis. Finally, Y27632 and tiron attenuated hyperoxia-induced increases in α-SMA and collagen-I in mouse lungs. Together, these results indicate that the actin cytoskeletal reorganization due to the ROS/RhoA-ROCK pathway mediates myofibroblast transformation and collagen synthesis in lung fibrosis of oxygen toxicity. MRTF-A contributes to the regulatory effect of the actin cytoskeleton on myofibroblast transformation during hyperoxia.

Original languageEnglish (US)
Pages (from-to)26-39
Number of pages14
JournalFree Radical Biology and Medicine
Volume61
DOIs
StatePublished - Apr 25 2013

Fingerprint

Myofibroblasts
Hyperoxia
Cytoskeleton
Actin Cytoskeleton
Actins
Fibrosis
Collagen
Lung
Transcription Factors
1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt
Reactive Oxygen Species
Fibroblasts
Serum Response Factor
Cytochalasin D
Transferases
myocardin
Genes
Smooth Muscle
Scavenging
Oxygen

Keywords

  • Collagen
  • Fibroblasts
  • Free radicals
  • Lung
  • MRTF-A
  • Oxygen toxicity
  • Reactive oxygen species

ASJC Scopus subject areas

  • Biochemistry
  • Physiology (medical)

Cite this

The role of RhoA and cytoskeleton in myofibroblast transformation in hyperoxic lung fibrosis. / Ni, Jixiang; Dong, Zheng; Han, Weihong; Kondrikov, Dmitry Yuryevich; Su, Yunchao.

In: Free Radical Biology and Medicine, Vol. 61, 25.04.2013, p. 26-39.

Research output: Contribution to journalArticle

@article{4f5e36824b154a96879ad37816e11405,
title = "The role of RhoA and cytoskeleton in myofibroblast transformation in hyperoxic lung fibrosis",
abstract = "Myofibroblast transformation is a key process in the pathogenesis of lung fibrosis. We have previously reported that hyperoxia induces RhoA activation in HFL-1 lung fibroblasts and RhoA mediates collagen synthesis in hyperoxic lung fibrosis. In this study, we investigated the role of RhoA and actin cytoskeleton in hyperoxia-induced myofibroblast transformation. Exposure of HFL-1 lung fibroblasts to hyperoxia stimulated actin filament formation, shift of G-actin to F-actin, nuclear colocalization of myocardin-related transcription factor-A (MRTF-A), recruitment of MRTF-A to the α-smooth muscle actin (α-SMA) gene promoter, myofibroblast transformation, and collagen-I synthesis. Inhibition of RhoA by C3 transferase CT-04 or dominant-negative RhoA mutant T19N, and inhibition of ROCK by Y27632, prevented myofibroblast transformation and collagen-I synthesis. Moreover, inhibition of RhoA by CT-04 prevented hyperoxia-induced actin filament formation, shift of G-actin to F-actin, and nuclear colocalization of MRTF-A. In addition, disrupting actin filaments with cytochalasin D or scavenging reactive oxygen species (ROS) with tiron attenuated actin filament formation, nuclear colocalization of MRTF-A, myofibroblast transformation, and collagen-I synthesis. Furthermore, overexpression of constitutively active RhoA mutant Q63L or stabilization of actin filaments recapitulated the effects of hyperoxia on the actin cytoskeleton and nuclear colocalization of MRTF-A, myofibroblast transformation, and collagen-I synthesis. Interestingly, knocking down MRTF-A prevented hyperoxia-induced increase in the recruitment of MRTF-A to the serum response factor transcriptional complex on the α-SMA gene promoter, myofibroblast transformation, and collagen-I synthesis. Finally, Y27632 and tiron attenuated hyperoxia-induced increases in α-SMA and collagen-I in mouse lungs. Together, these results indicate that the actin cytoskeletal reorganization due to the ROS/RhoA-ROCK pathway mediates myofibroblast transformation and collagen synthesis in lung fibrosis of oxygen toxicity. MRTF-A contributes to the regulatory effect of the actin cytoskeleton on myofibroblast transformation during hyperoxia.",
keywords = "Collagen, Fibroblasts, Free radicals, Lung, MRTF-A, Oxygen toxicity, Reactive oxygen species",
author = "Jixiang Ni and Zheng Dong and Weihong Han and Kondrikov, {Dmitry Yuryevich} and Yunchao Su",
year = "2013",
month = "4",
day = "25",
doi = "10.1016/j.freeradbiomed.2013.03.012",
language = "English (US)",
volume = "61",
pages = "26--39",
journal = "Free Radical Biology and Medicine",
issn = "0891-5849",
publisher = "Elsevier Inc.",

}

TY - JOUR

T1 - The role of RhoA and cytoskeleton in myofibroblast transformation in hyperoxic lung fibrosis

AU - Ni, Jixiang

AU - Dong, Zheng

AU - Han, Weihong

AU - Kondrikov, Dmitry Yuryevich

AU - Su, Yunchao

PY - 2013/4/25

Y1 - 2013/4/25

N2 - Myofibroblast transformation is a key process in the pathogenesis of lung fibrosis. We have previously reported that hyperoxia induces RhoA activation in HFL-1 lung fibroblasts and RhoA mediates collagen synthesis in hyperoxic lung fibrosis. In this study, we investigated the role of RhoA and actin cytoskeleton in hyperoxia-induced myofibroblast transformation. Exposure of HFL-1 lung fibroblasts to hyperoxia stimulated actin filament formation, shift of G-actin to F-actin, nuclear colocalization of myocardin-related transcription factor-A (MRTF-A), recruitment of MRTF-A to the α-smooth muscle actin (α-SMA) gene promoter, myofibroblast transformation, and collagen-I synthesis. Inhibition of RhoA by C3 transferase CT-04 or dominant-negative RhoA mutant T19N, and inhibition of ROCK by Y27632, prevented myofibroblast transformation and collagen-I synthesis. Moreover, inhibition of RhoA by CT-04 prevented hyperoxia-induced actin filament formation, shift of G-actin to F-actin, and nuclear colocalization of MRTF-A. In addition, disrupting actin filaments with cytochalasin D or scavenging reactive oxygen species (ROS) with tiron attenuated actin filament formation, nuclear colocalization of MRTF-A, myofibroblast transformation, and collagen-I synthesis. Furthermore, overexpression of constitutively active RhoA mutant Q63L or stabilization of actin filaments recapitulated the effects of hyperoxia on the actin cytoskeleton and nuclear colocalization of MRTF-A, myofibroblast transformation, and collagen-I synthesis. Interestingly, knocking down MRTF-A prevented hyperoxia-induced increase in the recruitment of MRTF-A to the serum response factor transcriptional complex on the α-SMA gene promoter, myofibroblast transformation, and collagen-I synthesis. Finally, Y27632 and tiron attenuated hyperoxia-induced increases in α-SMA and collagen-I in mouse lungs. Together, these results indicate that the actin cytoskeletal reorganization due to the ROS/RhoA-ROCK pathway mediates myofibroblast transformation and collagen synthesis in lung fibrosis of oxygen toxicity. MRTF-A contributes to the regulatory effect of the actin cytoskeleton on myofibroblast transformation during hyperoxia.

AB - Myofibroblast transformation is a key process in the pathogenesis of lung fibrosis. We have previously reported that hyperoxia induces RhoA activation in HFL-1 lung fibroblasts and RhoA mediates collagen synthesis in hyperoxic lung fibrosis. In this study, we investigated the role of RhoA and actin cytoskeleton in hyperoxia-induced myofibroblast transformation. Exposure of HFL-1 lung fibroblasts to hyperoxia stimulated actin filament formation, shift of G-actin to F-actin, nuclear colocalization of myocardin-related transcription factor-A (MRTF-A), recruitment of MRTF-A to the α-smooth muscle actin (α-SMA) gene promoter, myofibroblast transformation, and collagen-I synthesis. Inhibition of RhoA by C3 transferase CT-04 or dominant-negative RhoA mutant T19N, and inhibition of ROCK by Y27632, prevented myofibroblast transformation and collagen-I synthesis. Moreover, inhibition of RhoA by CT-04 prevented hyperoxia-induced actin filament formation, shift of G-actin to F-actin, and nuclear colocalization of MRTF-A. In addition, disrupting actin filaments with cytochalasin D or scavenging reactive oxygen species (ROS) with tiron attenuated actin filament formation, nuclear colocalization of MRTF-A, myofibroblast transformation, and collagen-I synthesis. Furthermore, overexpression of constitutively active RhoA mutant Q63L or stabilization of actin filaments recapitulated the effects of hyperoxia on the actin cytoskeleton and nuclear colocalization of MRTF-A, myofibroblast transformation, and collagen-I synthesis. Interestingly, knocking down MRTF-A prevented hyperoxia-induced increase in the recruitment of MRTF-A to the serum response factor transcriptional complex on the α-SMA gene promoter, myofibroblast transformation, and collagen-I synthesis. Finally, Y27632 and tiron attenuated hyperoxia-induced increases in α-SMA and collagen-I in mouse lungs. Together, these results indicate that the actin cytoskeletal reorganization due to the ROS/RhoA-ROCK pathway mediates myofibroblast transformation and collagen synthesis in lung fibrosis of oxygen toxicity. MRTF-A contributes to the regulatory effect of the actin cytoskeleton on myofibroblast transformation during hyperoxia.

KW - Collagen

KW - Fibroblasts

KW - Free radicals

KW - Lung

KW - MRTF-A

KW - Oxygen toxicity

KW - Reactive oxygen species

UR - http://www.scopus.com/inward/record.url?scp=84878829007&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84878829007&partnerID=8YFLogxK

U2 - 10.1016/j.freeradbiomed.2013.03.012

DO - 10.1016/j.freeradbiomed.2013.03.012

M3 - Article

VL - 61

SP - 26

EP - 39

JO - Free Radical Biology and Medicine

JF - Free Radical Biology and Medicine

SN - 0891-5849

ER -