Thermodynamic analyses of pirenzepine binding to membrane-bound and solubilized muscarinic receptors from rat forebrain and heart

Lin Mei, J. X. Wan, W. R. Roeske, H. I. Yamamura

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

The thermodynamic properties of pirenzepine (PZ) binding to membrane-bound and digitonin-solubilized muscarinic receptors (mAChR) from the rat forebrain and heart were evaluated. Apparent dissociation constants (K(d)) of PZ were measured from saturation studies using [3H]PZ for forebrain membrane-bound mAChR and from inhibition studies of (-)-[3H]quinuclidinyl benzilate binding using unlabeled PZ, at five different temperatures from 4°C to 37°C. The K(d) values of PZ binding to both membrane-bound and solubilized mAChR decreased with decreasing temperature whereas the maximum receptor density was unchanged. The heterogeneity of membrane-bound mAChR characterized by PZ binding to mAChR from both tissues disappeared upon digitonin-solubilization of the mAChR. The magnitude of changes of the K(d) values with temperature was greater in the solubilized mAChR, suggesting that some constituents in the membrane constrained the affinity changes. The Gibbs free energy of PZ binding to membrane-bound and solubilized mAChR were both negative. The Gibbs free energy for membrane-bound receptors decreased (more negative) whereas those for solubilized receptors increased (less negative) with increasing temperature. The change in entropy was the apparent major driving force for PZ binding to membrane-bound receptors with the change in enthalpy also being favorable. The change in enthalpy was the apparent major driving force for PZ binding to solubilized receptors at all temperatures with the change in entropy being unfavorable above 17°C in the rat forebrain mAChR and above 10°C in the heart mAChR. Our results suggest an important role for the biomembrane microenvironment and possible topographical differences in the binding sites which may contribute to the mechanism of muscarinic subtypes.

Original languageEnglish (US)
Pages (from-to)991-1000
Number of pages10
JournalJournal of Pharmacology and Experimental Therapeutics
Volume242
Issue number3
StatePublished - Dec 1 1987

Fingerprint

Pirenzepine
Muscarinic Receptors
Prosencephalon
Thermodynamics
Membranes
Temperature
Digitonin
Entropy
Quinuclidinyl Benzilate
Cholinergic Agents
Binding Sites

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology

Cite this

Thermodynamic analyses of pirenzepine binding to membrane-bound and solubilized muscarinic receptors from rat forebrain and heart. / Mei, Lin; Wan, J. X.; Roeske, W. R.; Yamamura, H. I.

In: Journal of Pharmacology and Experimental Therapeutics, Vol. 242, No. 3, 01.12.1987, p. 991-1000.

Research output: Contribution to journalArticle

@article{f4c775a2d2a44dcc862cb101447658e8,
title = "Thermodynamic analyses of pirenzepine binding to membrane-bound and solubilized muscarinic receptors from rat forebrain and heart",
abstract = "The thermodynamic properties of pirenzepine (PZ) binding to membrane-bound and digitonin-solubilized muscarinic receptors (mAChR) from the rat forebrain and heart were evaluated. Apparent dissociation constants (K(d)) of PZ were measured from saturation studies using [3H]PZ for forebrain membrane-bound mAChR and from inhibition studies of (-)-[3H]quinuclidinyl benzilate binding using unlabeled PZ, at five different temperatures from 4°C to 37°C. The K(d) values of PZ binding to both membrane-bound and solubilized mAChR decreased with decreasing temperature whereas the maximum receptor density was unchanged. The heterogeneity of membrane-bound mAChR characterized by PZ binding to mAChR from both tissues disappeared upon digitonin-solubilization of the mAChR. The magnitude of changes of the K(d) values with temperature was greater in the solubilized mAChR, suggesting that some constituents in the membrane constrained the affinity changes. The Gibbs free energy of PZ binding to membrane-bound and solubilized mAChR were both negative. The Gibbs free energy for membrane-bound receptors decreased (more negative) whereas those for solubilized receptors increased (less negative) with increasing temperature. The change in entropy was the apparent major driving force for PZ binding to membrane-bound receptors with the change in enthalpy also being favorable. The change in enthalpy was the apparent major driving force for PZ binding to solubilized receptors at all temperatures with the change in entropy being unfavorable above 17°C in the rat forebrain mAChR and above 10°C in the heart mAChR. Our results suggest an important role for the biomembrane microenvironment and possible topographical differences in the binding sites which may contribute to the mechanism of muscarinic subtypes.",
author = "Lin Mei and Wan, {J. X.} and Roeske, {W. R.} and Yamamura, {H. I.}",
year = "1987",
month = "12",
day = "1",
language = "English (US)",
volume = "242",
pages = "991--1000",
journal = "The Journal of pharmacology and experimental therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "3",

}

TY - JOUR

T1 - Thermodynamic analyses of pirenzepine binding to membrane-bound and solubilized muscarinic receptors from rat forebrain and heart

AU - Mei, Lin

AU - Wan, J. X.

AU - Roeske, W. R.

AU - Yamamura, H. I.

PY - 1987/12/1

Y1 - 1987/12/1

N2 - The thermodynamic properties of pirenzepine (PZ) binding to membrane-bound and digitonin-solubilized muscarinic receptors (mAChR) from the rat forebrain and heart were evaluated. Apparent dissociation constants (K(d)) of PZ were measured from saturation studies using [3H]PZ for forebrain membrane-bound mAChR and from inhibition studies of (-)-[3H]quinuclidinyl benzilate binding using unlabeled PZ, at five different temperatures from 4°C to 37°C. The K(d) values of PZ binding to both membrane-bound and solubilized mAChR decreased with decreasing temperature whereas the maximum receptor density was unchanged. The heterogeneity of membrane-bound mAChR characterized by PZ binding to mAChR from both tissues disappeared upon digitonin-solubilization of the mAChR. The magnitude of changes of the K(d) values with temperature was greater in the solubilized mAChR, suggesting that some constituents in the membrane constrained the affinity changes. The Gibbs free energy of PZ binding to membrane-bound and solubilized mAChR were both negative. The Gibbs free energy for membrane-bound receptors decreased (more negative) whereas those for solubilized receptors increased (less negative) with increasing temperature. The change in entropy was the apparent major driving force for PZ binding to membrane-bound receptors with the change in enthalpy also being favorable. The change in enthalpy was the apparent major driving force for PZ binding to solubilized receptors at all temperatures with the change in entropy being unfavorable above 17°C in the rat forebrain mAChR and above 10°C in the heart mAChR. Our results suggest an important role for the biomembrane microenvironment and possible topographical differences in the binding sites which may contribute to the mechanism of muscarinic subtypes.

AB - The thermodynamic properties of pirenzepine (PZ) binding to membrane-bound and digitonin-solubilized muscarinic receptors (mAChR) from the rat forebrain and heart were evaluated. Apparent dissociation constants (K(d)) of PZ were measured from saturation studies using [3H]PZ for forebrain membrane-bound mAChR and from inhibition studies of (-)-[3H]quinuclidinyl benzilate binding using unlabeled PZ, at five different temperatures from 4°C to 37°C. The K(d) values of PZ binding to both membrane-bound and solubilized mAChR decreased with decreasing temperature whereas the maximum receptor density was unchanged. The heterogeneity of membrane-bound mAChR characterized by PZ binding to mAChR from both tissues disappeared upon digitonin-solubilization of the mAChR. The magnitude of changes of the K(d) values with temperature was greater in the solubilized mAChR, suggesting that some constituents in the membrane constrained the affinity changes. The Gibbs free energy of PZ binding to membrane-bound and solubilized mAChR were both negative. The Gibbs free energy for membrane-bound receptors decreased (more negative) whereas those for solubilized receptors increased (less negative) with increasing temperature. The change in entropy was the apparent major driving force for PZ binding to membrane-bound receptors with the change in enthalpy also being favorable. The change in enthalpy was the apparent major driving force for PZ binding to solubilized receptors at all temperatures with the change in entropy being unfavorable above 17°C in the rat forebrain mAChR and above 10°C in the heart mAChR. Our results suggest an important role for the biomembrane microenvironment and possible topographical differences in the binding sites which may contribute to the mechanism of muscarinic subtypes.

UR - http://www.scopus.com/inward/record.url?scp=0023629243&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023629243&partnerID=8YFLogxK

M3 - Article

C2 - 3656121

AN - SCOPUS:0023629243

VL - 242

SP - 991

EP - 1000

JO - The Journal of pharmacology and experimental therapeutics

JF - The Journal of pharmacology and experimental therapeutics

SN - 0022-3565

IS - 3

ER -