Time efficient gossiping in known radio networks

Leszek Ga̧sieniec, Igor Potapov, Qin Xin

Research output: Contribution to journalArticle

25 Scopus citations


We study here the gossiping problem (all-to-all communication) in known radio networks, i.e., when all nodes are aware of the network topology. We start our presentation with a deterministic algorithm for the gossiping problem that works in at most n units of time in any radio network of size n. This is an optimal algorithm in the sense that there exist radio network topologies, such as: a line, a star and a complete graph in which the radio gossiping cannot be completed in less then n units of time. Furthermore, we show that there isn't any radio network topology in which the gossiping task can be solved in time < ⌊log(n - 1)⌋ + 2. We show also that this lower bound can be matched from above for a fraction of all possible integer values of n; and for all other values of n we propose a solution admitting gossiping in time ⌈log(n - 1)⌉ + 2. Finally we study asymptotically optimal O(D)-time gossiping (where D is a diameter of the network) in graphs with max-degree Δ = O(D1-1/(i+1)/ logi n), for any integer constant i ≥ 0 and D large enough.

Original languageEnglish (US)
Pages (from-to)173-184
Number of pages12
JournalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
StatePublished - Dec 1 2004
Externally publishedYes

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Time efficient gossiping in known radio networks'. Together they form a unique fingerprint.

  • Cite this