Time-resolved fluorescence polarization measurements for entire emission spectra with a resistive-anode, single-photon-counting detector: The Fluorescence omnilyzer

Lisa A. Kelly, John G. Trunk, John C. Sutherland

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

We report a fluorescence analyzer that records simultaneously the temporal profiles for both orthogonal linear polarizations for all wavelengths in a fluorescence emission spectrum. The Analyzer combines a resistive-anode single-photon-counting photomultiplier, imaging spectrograph, Wollaston polarizer, multiparameter analyzer with histograming memory, and standard timing electronics. The spectrograph disperses the fluorescence spectrum across the photocathode of the photomultiplier, and the Wollaston polarizer separates the spectra of the two polarizations in opposite directions from the center of the photocathode perpendicular to the direction of spectral dispersion. The locations at which each photon reaches the photocathode is determined by the ratios of the charges read from the four corners of the resistive anode. One of the two address coordinates that determine where in histogramming memory each photon is recorded is obtained by measuring the time of arrival of the photon at the detector relative to the pulse of light that excites the fluorescence. The second address coordinate is obtained by combining the most-significant bit of the location of the event along the direction on the resistive anode corresponding to the polarization of the photon with the multibit digital value indicating photon wavelength. Storing the data directly into histogramming memory permits display of the data set as it is recorded. Both the spectral and temporal calibrations of the fluorescence analyzer are independent of the polarization of the fluorescence. The ≈100 ps temporal resolution of the resistive-anode detector is well matched to the ≈ 1 ns full width at half-maximum pulses of light produced by the synchrotron storage ring that we use as the excitation source, but laser excitation could also be used with this detector. Recording simultaneously all of the data required for the global analysis of the time evolution of both linear polarization components of fluorescence, and thus, time-resolved anisotropy, reduces the duration of exposure of the sample to the excitation beam, hence, facilitating studies of fragile or photosensitive biological specimens.

Original languageEnglish (US)
Pages (from-to)2279-2286
Number of pages8
JournalReview of Scientific Instruments
Volume68
Issue number6
DOIs
StatePublished - Jan 1 1997
Externally publishedYes

Fingerprint

counting
Anodes
emission spectra
anodes
Photons
Fluorescence
Polarization
Detectors
fluorescence
detectors
photons
polarization
Photocathodes
analyzers
photocathodes
Spectrographs
Photomultipliers
polarizers
linear polarization
Data storage equipment

ASJC Scopus subject areas

  • Instrumentation

Cite this

@article{304752fccaa341e0a83bb1e8b2494d5b,
title = "Time-resolved fluorescence polarization measurements for entire emission spectra with a resistive-anode, single-photon-counting detector: The Fluorescence omnilyzer",
abstract = "We report a fluorescence analyzer that records simultaneously the temporal profiles for both orthogonal linear polarizations for all wavelengths in a fluorescence emission spectrum. The Analyzer combines a resistive-anode single-photon-counting photomultiplier, imaging spectrograph, Wollaston polarizer, multiparameter analyzer with histograming memory, and standard timing electronics. The spectrograph disperses the fluorescence spectrum across the photocathode of the photomultiplier, and the Wollaston polarizer separates the spectra of the two polarizations in opposite directions from the center of the photocathode perpendicular to the direction of spectral dispersion. The locations at which each photon reaches the photocathode is determined by the ratios of the charges read from the four corners of the resistive anode. One of the two address coordinates that determine where in histogramming memory each photon is recorded is obtained by measuring the time of arrival of the photon at the detector relative to the pulse of light that excites the fluorescence. The second address coordinate is obtained by combining the most-significant bit of the location of the event along the direction on the resistive anode corresponding to the polarization of the photon with the multibit digital value indicating photon wavelength. Storing the data directly into histogramming memory permits display of the data set as it is recorded. Both the spectral and temporal calibrations of the fluorescence analyzer are independent of the polarization of the fluorescence. The ≈100 ps temporal resolution of the resistive-anode detector is well matched to the ≈ 1 ns full width at half-maximum pulses of light produced by the synchrotron storage ring that we use as the excitation source, but laser excitation could also be used with this detector. Recording simultaneously all of the data required for the global analysis of the time evolution of both linear polarization components of fluorescence, and thus, time-resolved anisotropy, reduces the duration of exposure of the sample to the excitation beam, hence, facilitating studies of fragile or photosensitive biological specimens.",
author = "Kelly, {Lisa A.} and Trunk, {John G.} and Sutherland, {John C.}",
year = "1997",
month = "1",
day = "1",
doi = "10.1063/1.1148173",
language = "English (US)",
volume = "68",
pages = "2279--2286",
journal = "Review of Scientific Instruments",
issn = "0034-6748",
publisher = "American Institute of Physics Publising LLC",
number = "6",

}

TY - JOUR

T1 - Time-resolved fluorescence polarization measurements for entire emission spectra with a resistive-anode, single-photon-counting detector

T2 - The Fluorescence omnilyzer

AU - Kelly, Lisa A.

AU - Trunk, John G.

AU - Sutherland, John C.

PY - 1997/1/1

Y1 - 1997/1/1

N2 - We report a fluorescence analyzer that records simultaneously the temporal profiles for both orthogonal linear polarizations for all wavelengths in a fluorescence emission spectrum. The Analyzer combines a resistive-anode single-photon-counting photomultiplier, imaging spectrograph, Wollaston polarizer, multiparameter analyzer with histograming memory, and standard timing electronics. The spectrograph disperses the fluorescence spectrum across the photocathode of the photomultiplier, and the Wollaston polarizer separates the spectra of the two polarizations in opposite directions from the center of the photocathode perpendicular to the direction of spectral dispersion. The locations at which each photon reaches the photocathode is determined by the ratios of the charges read from the four corners of the resistive anode. One of the two address coordinates that determine where in histogramming memory each photon is recorded is obtained by measuring the time of arrival of the photon at the detector relative to the pulse of light that excites the fluorescence. The second address coordinate is obtained by combining the most-significant bit of the location of the event along the direction on the resistive anode corresponding to the polarization of the photon with the multibit digital value indicating photon wavelength. Storing the data directly into histogramming memory permits display of the data set as it is recorded. Both the spectral and temporal calibrations of the fluorescence analyzer are independent of the polarization of the fluorescence. The ≈100 ps temporal resolution of the resistive-anode detector is well matched to the ≈ 1 ns full width at half-maximum pulses of light produced by the synchrotron storage ring that we use as the excitation source, but laser excitation could also be used with this detector. Recording simultaneously all of the data required for the global analysis of the time evolution of both linear polarization components of fluorescence, and thus, time-resolved anisotropy, reduces the duration of exposure of the sample to the excitation beam, hence, facilitating studies of fragile or photosensitive biological specimens.

AB - We report a fluorescence analyzer that records simultaneously the temporal profiles for both orthogonal linear polarizations for all wavelengths in a fluorescence emission spectrum. The Analyzer combines a resistive-anode single-photon-counting photomultiplier, imaging spectrograph, Wollaston polarizer, multiparameter analyzer with histograming memory, and standard timing electronics. The spectrograph disperses the fluorescence spectrum across the photocathode of the photomultiplier, and the Wollaston polarizer separates the spectra of the two polarizations in opposite directions from the center of the photocathode perpendicular to the direction of spectral dispersion. The locations at which each photon reaches the photocathode is determined by the ratios of the charges read from the four corners of the resistive anode. One of the two address coordinates that determine where in histogramming memory each photon is recorded is obtained by measuring the time of arrival of the photon at the detector relative to the pulse of light that excites the fluorescence. The second address coordinate is obtained by combining the most-significant bit of the location of the event along the direction on the resistive anode corresponding to the polarization of the photon with the multibit digital value indicating photon wavelength. Storing the data directly into histogramming memory permits display of the data set as it is recorded. Both the spectral and temporal calibrations of the fluorescence analyzer are independent of the polarization of the fluorescence. The ≈100 ps temporal resolution of the resistive-anode detector is well matched to the ≈ 1 ns full width at half-maximum pulses of light produced by the synchrotron storage ring that we use as the excitation source, but laser excitation could also be used with this detector. Recording simultaneously all of the data required for the global analysis of the time evolution of both linear polarization components of fluorescence, and thus, time-resolved anisotropy, reduces the duration of exposure of the sample to the excitation beam, hence, facilitating studies of fragile or photosensitive biological specimens.

UR - http://www.scopus.com/inward/record.url?scp=0031167167&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031167167&partnerID=8YFLogxK

U2 - 10.1063/1.1148173

DO - 10.1063/1.1148173

M3 - Article

AN - SCOPUS:0031167167

VL - 68

SP - 2279

EP - 2286

JO - Review of Scientific Instruments

JF - Review of Scientific Instruments

SN - 0034-6748

IS - 6

ER -