Trans-cinnamaldehyde improves memory impairment by blocking microglial activation through the destabilization of iNOS mRNA in mice challenged with lipopolysaccharide

Liqing Zhang, Zhangang Zhang, Yan Fu, Pin Yang, Zhenxia Qin, Yongjun Chen, Ying Xu

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Microglia activation and neuroinflammation are critically involved in pathogenesis of neurodegenerative disorders. Patients with neurodegenerative disorders often suffer memory impairment and currently there is no effective treatment for inflammation-led memory impairment. Trans-cinnamaldehyde (TCA) isolated from medicinal herb Cinnamomum cassia has been shown to exhibit anti-inflammatory capability. However, the potential of TCA to be used to improve memory impairment under neuroinflammation has not been explored. Primary microglia stimulated by lipopolysaccharide (LPS) were used to evaluate the potential anti-neuroinflammatory effects of TCA by examining the production of nitric oxide (NO), expression of inducible nitric oxide synthase (iNOS), pro-inflammatory cytokines, and activation of MAPKs. A mouse model of LPS-induced memory impairment was established to assess the neuroprotective effects of TCA against memory deficit and synaptic plasticity inhibition by both behavioral tests and electrophysiological recordings. TCA pretreatment decreased LPS-induced morphological changes, NO production and IL-1β release in primary microglia. Decreased NO production was due to the accelerated degradation of iNOS mRNA in LPS-stimulated microglia through TCA's inhibitory effect on MEK1/2-ERK1/2 signaling pathway. TCA was able to reduce the levels of iNOS and phosphorylated ERK1/2 in hippocampus of mice challenged with LPS. Most importantly, TCA significantly lessened memory deficit and improved synaptic plasticity in LPS-challenged mice. This study demonstrates that TCA suppressed microglial activation by destabilizing iNOS mRNA, which leads to improved memory impairment in mice suffering neuroinflammation.

Original languageEnglish (US)
Pages (from-to)503-518
Number of pages16
JournalNeuropharmacology
Volume110
DOIs
StatePublished - Nov 1 2016

Keywords

  • MEK1/2-ERK1/2 signaling pathway
  • Memory impairment
  • Microglial activation
  • Neuroinflammation
  • Trans-cinnamaldehyde
  • iNOS mRNA stability

ASJC Scopus subject areas

  • Pharmacology
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Trans-cinnamaldehyde improves memory impairment by blocking microglial activation through the destabilization of iNOS mRNA in mice challenged with lipopolysaccharide'. Together they form a unique fingerprint.

Cite this