TU‐D‐352‐02

Magnetic Resonance Imaging to Track Mesenchymal Stem Cells (MSCs) in a Murine Myocardial Infarction Model

Y. Yang, Y. Yang, B. Klein, Nathan Eugene Yanasak, Xing Ming Shi, W. Hill, T. Hu

Research output: Contribution to journalArticle

Abstract

Purpose: To track the migration and engraftment of the mesenchymal stem cells (MSCs) with micrometer‐sized particles of iron oxide (MPIO) labeling into myocardial infarcted site using MRI in mice. Method and Materials: MSCs with GFP fluorescence were labeled with MPIO. Mice were irradiated with a dose of 8 Gy and received rescuing bone marrow transplantation 24 hrs later. The labeled MSCs (∼3–7×105cells) were then transplanted into the tibial modullary space of mice. The mice were randomly divided into two groups. At 14 days post‐MSCs transplantation, one group underwent myocardial infarction (MI; n=4; open chest with ligation of the left anterior descending coronary artery (LAD)) and the other group underwent sham‐operated surgery (Sham; n=2; open chest without ligating the LAD). MRI was performed at baseline, 3 days (D3), 7 days (D7) and 14 days (D14) post‐surgery. Short‐axis cardiac images were acquired using T2*‐weighted imaging and T2 mapping technique. The results were confirmed by fluorescent microscopy. The contrast‐to‐noise ratio (CNR) at the MI zone was calculated. For the Sham group, a CNR at a region of interest (ROI) designated in the left ventricular anterior wall was also calculated and compared with the MI group. Results: Pronounced signal intensity attenuation at the MI zone was observed by MRI at D7 and D14, potentially due to the accumulation of MPIO labeled stem cells. Both accumulation of stem cells with GFP signal and MPIO deposition in the heart were detected in the fluorescent microscopic images. The CNR were significantly different between the MI and Sham groups at D7 and D14 (p<0.05). Conclusion: Hypointense signal was observed at the MI zone in MRI, suggesting the infiltration of labeled MSCs. Current study may support a potential approach in cell therapy to noninvasive monitor migration of labeled cells post myocardial injury.

Original languageEnglish (US)
Pages (from-to)2898
Number of pages1
JournalMedical Physics
Volume35
Issue number6
DOIs
StatePublished - 2008

Fingerprint

Mesenchymal Stromal Cells
Myocardial Infarction
Magnetic Resonance Imaging
Thorax
Stem Cells
Cell- and Tissue-Based Therapy
Bone Marrow Transplantation
Cell Movement
Ligation
Microscopy
Coronary Vessels
Transplantation
Fluorescence
ferric oxide
Wounds and Injuries

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this

TU‐D‐352‐02 : Magnetic Resonance Imaging to Track Mesenchymal Stem Cells (MSCs) in a Murine Myocardial Infarction Model. / Yang, Y.; Yang, Y.; Klein, B.; Yanasak, Nathan Eugene; Shi, Xing Ming; Hill, W.; Hu, T.

In: Medical Physics, Vol. 35, No. 6, 2008, p. 2898.

Research output: Contribution to journalArticle

@article{fcfb0b2378dc45d9b1b6b5fe0364acbe,
title = "TU‐D‐352‐02: Magnetic Resonance Imaging to Track Mesenchymal Stem Cells (MSCs) in a Murine Myocardial Infarction Model",
abstract = "Purpose: To track the migration and engraftment of the mesenchymal stem cells (MSCs) with micrometer‐sized particles of iron oxide (MPIO) labeling into myocardial infarcted site using MRI in mice. Method and Materials: MSCs with GFP fluorescence were labeled with MPIO. Mice were irradiated with a dose of 8 Gy and received rescuing bone marrow transplantation 24 hrs later. The labeled MSCs (∼3–7×105cells) were then transplanted into the tibial modullary space of mice. The mice were randomly divided into two groups. At 14 days post‐MSCs transplantation, one group underwent myocardial infarction (MI; n=4; open chest with ligation of the left anterior descending coronary artery (LAD)) and the other group underwent sham‐operated surgery (Sham; n=2; open chest without ligating the LAD). MRI was performed at baseline, 3 days (D3), 7 days (D7) and 14 days (D14) post‐surgery. Short‐axis cardiac images were acquired using T2*‐weighted imaging and T2 mapping technique. The results were confirmed by fluorescent microscopy. The contrast‐to‐noise ratio (CNR) at the MI zone was calculated. For the Sham group, a CNR at a region of interest (ROI) designated in the left ventricular anterior wall was also calculated and compared with the MI group. Results: Pronounced signal intensity attenuation at the MI zone was observed by MRI at D7 and D14, potentially due to the accumulation of MPIO labeled stem cells. Both accumulation of stem cells with GFP signal and MPIO deposition in the heart were detected in the fluorescent microscopic images. The CNR were significantly different between the MI and Sham groups at D7 and D14 (p<0.05). Conclusion: Hypointense signal was observed at the MI zone in MRI, suggesting the infiltration of labeled MSCs. Current study may support a potential approach in cell therapy to noninvasive monitor migration of labeled cells post myocardial injury.",
author = "Y. Yang and Y. Yang and B. Klein and Yanasak, {Nathan Eugene} and Shi, {Xing Ming} and W. Hill and T. Hu",
year = "2008",
doi = "10.1118/1.2962560",
language = "English (US)",
volume = "35",
pages = "2898",
journal = "Medical Physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "6",

}

TY - JOUR

T1 - TU‐D‐352‐02

T2 - Magnetic Resonance Imaging to Track Mesenchymal Stem Cells (MSCs) in a Murine Myocardial Infarction Model

AU - Yang, Y.

AU - Yang, Y.

AU - Klein, B.

AU - Yanasak, Nathan Eugene

AU - Shi, Xing Ming

AU - Hill, W.

AU - Hu, T.

PY - 2008

Y1 - 2008

N2 - Purpose: To track the migration and engraftment of the mesenchymal stem cells (MSCs) with micrometer‐sized particles of iron oxide (MPIO) labeling into myocardial infarcted site using MRI in mice. Method and Materials: MSCs with GFP fluorescence were labeled with MPIO. Mice were irradiated with a dose of 8 Gy and received rescuing bone marrow transplantation 24 hrs later. The labeled MSCs (∼3–7×105cells) were then transplanted into the tibial modullary space of mice. The mice were randomly divided into two groups. At 14 days post‐MSCs transplantation, one group underwent myocardial infarction (MI; n=4; open chest with ligation of the left anterior descending coronary artery (LAD)) and the other group underwent sham‐operated surgery (Sham; n=2; open chest without ligating the LAD). MRI was performed at baseline, 3 days (D3), 7 days (D7) and 14 days (D14) post‐surgery. Short‐axis cardiac images were acquired using T2*‐weighted imaging and T2 mapping technique. The results were confirmed by fluorescent microscopy. The contrast‐to‐noise ratio (CNR) at the MI zone was calculated. For the Sham group, a CNR at a region of interest (ROI) designated in the left ventricular anterior wall was also calculated and compared with the MI group. Results: Pronounced signal intensity attenuation at the MI zone was observed by MRI at D7 and D14, potentially due to the accumulation of MPIO labeled stem cells. Both accumulation of stem cells with GFP signal and MPIO deposition in the heart were detected in the fluorescent microscopic images. The CNR were significantly different between the MI and Sham groups at D7 and D14 (p<0.05). Conclusion: Hypointense signal was observed at the MI zone in MRI, suggesting the infiltration of labeled MSCs. Current study may support a potential approach in cell therapy to noninvasive monitor migration of labeled cells post myocardial injury.

AB - Purpose: To track the migration and engraftment of the mesenchymal stem cells (MSCs) with micrometer‐sized particles of iron oxide (MPIO) labeling into myocardial infarcted site using MRI in mice. Method and Materials: MSCs with GFP fluorescence were labeled with MPIO. Mice were irradiated with a dose of 8 Gy and received rescuing bone marrow transplantation 24 hrs later. The labeled MSCs (∼3–7×105cells) were then transplanted into the tibial modullary space of mice. The mice were randomly divided into two groups. At 14 days post‐MSCs transplantation, one group underwent myocardial infarction (MI; n=4; open chest with ligation of the left anterior descending coronary artery (LAD)) and the other group underwent sham‐operated surgery (Sham; n=2; open chest without ligating the LAD). MRI was performed at baseline, 3 days (D3), 7 days (D7) and 14 days (D14) post‐surgery. Short‐axis cardiac images were acquired using T2*‐weighted imaging and T2 mapping technique. The results were confirmed by fluorescent microscopy. The contrast‐to‐noise ratio (CNR) at the MI zone was calculated. For the Sham group, a CNR at a region of interest (ROI) designated in the left ventricular anterior wall was also calculated and compared with the MI group. Results: Pronounced signal intensity attenuation at the MI zone was observed by MRI at D7 and D14, potentially due to the accumulation of MPIO labeled stem cells. Both accumulation of stem cells with GFP signal and MPIO deposition in the heart were detected in the fluorescent microscopic images. The CNR were significantly different between the MI and Sham groups at D7 and D14 (p<0.05). Conclusion: Hypointense signal was observed at the MI zone in MRI, suggesting the infiltration of labeled MSCs. Current study may support a potential approach in cell therapy to noninvasive monitor migration of labeled cells post myocardial injury.

UR - http://www.scopus.com/inward/record.url?scp=85024825688&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85024825688&partnerID=8YFLogxK

U2 - 10.1118/1.2962560

DO - 10.1118/1.2962560

M3 - Article

VL - 35

SP - 2898

JO - Medical Physics

JF - Medical Physics

SN - 0094-2405

IS - 6

ER -