Visualizing Membrane Ruffle Formation using Scanning Electron Microscopy

Wonmo Ahn, Bhupesh Singla, Brendan Marshall, Gábor Csányi

Research output: Contribution to journalArticlepeer-review

Abstract

Membrane ruffling is the formation of motile plasma membrane protrusions containing a meshwork of newly polymerized actin filaments. Membrane ruffles may form spontaneously or in response to growth factors, inflammatory cytokines, and phorbol esters. Some of the membrane protrusions may reorganize into circular membrane ruffles that fuse at their distal margins and form cups that close and separate into the cytoplasm as large, heterogeneous vacuoles called macropinosomes. During the process, ruffles trap extracellular fluid and solutes that internalize within macropinosomes. High-resolution scanning electron microscopy (SEM) is a commonly used imaging technique to visualize and quantify membrane ruffle formation, circular protrusions, and closed macropinocytic cups on the cell surface. The following protocol describes the cell culture conditions, stimulation of the membrane ruffle formation in vitro, and how to fix, dehydrate, and prepare cells for imaging using SEM. Quantification of membrane ruffling, data normalization, and stimulators and inhibitors of membrane ruffle formation are also described. This method can help answer key questions about the role of macropinocytosis in physiological and pathological processes, investigate new targets that regulate membrane ruffle formation, and identify yet uncharacterized physiological stimulators as well as novel pharmacological inhibitors of macropinocytosis.

Original languageEnglish (US)
Article numbere62658
JournalJournal of Visualized Experiments
Volume2021
Issue number171
DOIs
StatePublished - May 2021

ASJC Scopus subject areas

  • General Neuroscience
  • General Chemical Engineering
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'Visualizing Membrane Ruffle Formation using Scanning Electron Microscopy'. Together they form a unique fingerprint.

Cite this