WE‐D‐303A‐04: Mircometer‐Sized Iron Oxide Particles (MPIO) Enhanced MRI with Granulocyte‐Colony Stimulating Factor (GCSF) Modulation in Murine Myocardial Infarction Model

Y. Yang, Y. Yang, B. Klein, Xing Ming Shi, Nathan Eugene Yanasak, William D Hill, T. hu

Research output: Contribution to journalArticle

Abstract

Purpose: To monitor the MPIO and enhanced green fluorescence protein (eGFP) labeled mesenchymal stem cells (MSCs) infiltration into the myocardial infarction (MI) site using [formula omitted]‐weighted MRI; To monitor the MRI contrast around the MI site post‐GCSF modulation. Methods: C57Bl/6 male mice (6–8 weeks old) were irradiated with an 8‐Gy dose. The labeled MSCs (3–7×105) were transplanted into the tibial medullary space 2 days post‐irradiation. The mice were divided into: 1) a sham‐operated group (Sham, n=7); 2) a MI group without GCSF injection (MI‐GCSF, n=7); and 3) a MI group with GCSF treatment (MI+GCSF, n=3). At 14 days post‐labeled MSCs transplantation, the two MI groups underwent surgery via permanent ligation of the left anterior descending coronary artery while the Sham group underwent open‐chest operation without perturbing the heart. The MI+GCSF group received subcutaneous GCSF injection 1 day post‐MI to enhance MSC mobilization. [formula omitted]‐weighted short‐axis cardiac MRI was performed at baseline, 3, 7 and 14 days (D14) post‐surgery. Results: The MRI signal at the MI site was temporally attenuated for both MI groups, with more attenuated for MI+GCSF group (SNR 18.17±6.06 vs 11.37±1.01 at D14, p<0.05), but not for Sham group (30.63±5.69). The MI+GCSF group showed a trend of cardiac function improvement relative to MI‐GCSF group (left ventricular ejection function 45.55±7.52% vs 40.80±16.69% at D14), but it is insignificant possibly due to the small sample number. Dual‐labeled cells were fluorescently detected around the infarction site. Conclusions: Migration of MPIO‐labeled MSCs from bone marrow into the injured heart can be temporally monitored by MRI and additional signal attenuation caused by GCSF treatment can be differentiated. Results of this study suggest a potential approach in cell therapy to noninvasively monitor migration of labeled cells as well as the mobilization modulation produced by pharmaceuticals in the MI related events.

Original languageEnglish (US)
Number of pages1
JournalMedical Physics
Volume36
Issue number6
DOIs
StatePublished - Jan 1 2009

Fingerprint

Myocardial Infarction
Mesenchymal Stromal Cells
ferric oxide
Mesenchymal Stem Cell Transplantation
Hematopoietic Stem Cell Mobilization
Injections
Cell- and Tissue-Based Therapy
Left Ventricular Function
Infarction
Cell Movement
Ligation
Coronary Vessels
Fluorescence
Bone Marrow
Therapeutics
Pharmaceutical Preparations

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this

@article{ab06ba226ca2435184d3e2a89a0c2d8a,
title = "WE‐D‐303A‐04: Mircometer‐Sized Iron Oxide Particles (MPIO) Enhanced MRI with Granulocyte‐Colony Stimulating Factor (GCSF) Modulation in Murine Myocardial Infarction Model",
abstract = "Purpose: To monitor the MPIO and enhanced green fluorescence protein (eGFP) labeled mesenchymal stem cells (MSCs) infiltration into the myocardial infarction (MI) site using [formula omitted]‐weighted MRI; To monitor the MRI contrast around the MI site post‐GCSF modulation. Methods: C57Bl/6 male mice (6–8 weeks old) were irradiated with an 8‐Gy dose. The labeled MSCs (3–7×105) were transplanted into the tibial medullary space 2 days post‐irradiation. The mice were divided into: 1) a sham‐operated group (Sham, n=7); 2) a MI group without GCSF injection (MI‐GCSF, n=7); and 3) a MI group with GCSF treatment (MI+GCSF, n=3). At 14 days post‐labeled MSCs transplantation, the two MI groups underwent surgery via permanent ligation of the left anterior descending coronary artery while the Sham group underwent open‐chest operation without perturbing the heart. The MI+GCSF group received subcutaneous GCSF injection 1 day post‐MI to enhance MSC mobilization. [formula omitted]‐weighted short‐axis cardiac MRI was performed at baseline, 3, 7 and 14 days (D14) post‐surgery. Results: The MRI signal at the MI site was temporally attenuated for both MI groups, with more attenuated for MI+GCSF group (SNR 18.17±6.06 vs 11.37±1.01 at D14, p<0.05), but not for Sham group (30.63±5.69). The MI+GCSF group showed a trend of cardiac function improvement relative to MI‐GCSF group (left ventricular ejection function 45.55±7.52{\%} vs 40.80±16.69{\%} at D14), but it is insignificant possibly due to the small sample number. Dual‐labeled cells were fluorescently detected around the infarction site. Conclusions: Migration of MPIO‐labeled MSCs from bone marrow into the injured heart can be temporally monitored by MRI and additional signal attenuation caused by GCSF treatment can be differentiated. Results of this study suggest a potential approach in cell therapy to noninvasively monitor migration of labeled cells as well as the mobilization modulation produced by pharmaceuticals in the MI related events.",
author = "Y. Yang and Y. Yang and B. Klein and Shi, {Xing Ming} and Yanasak, {Nathan Eugene} and Hill, {William D} and T. hu",
year = "2009",
month = "1",
day = "1",
doi = "10.1118/1.3182531",
language = "English (US)",
volume = "36",
journal = "Medical Physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "6",

}

TY - JOUR

T1 - WE‐D‐303A‐04

T2 - Mircometer‐Sized Iron Oxide Particles (MPIO) Enhanced MRI with Granulocyte‐Colony Stimulating Factor (GCSF) Modulation in Murine Myocardial Infarction Model

AU - Yang, Y.

AU - Yang, Y.

AU - Klein, B.

AU - Shi, Xing Ming

AU - Yanasak, Nathan Eugene

AU - Hill, William D

AU - hu, T.

PY - 2009/1/1

Y1 - 2009/1/1

N2 - Purpose: To monitor the MPIO and enhanced green fluorescence protein (eGFP) labeled mesenchymal stem cells (MSCs) infiltration into the myocardial infarction (MI) site using [formula omitted]‐weighted MRI; To monitor the MRI contrast around the MI site post‐GCSF modulation. Methods: C57Bl/6 male mice (6–8 weeks old) were irradiated with an 8‐Gy dose. The labeled MSCs (3–7×105) were transplanted into the tibial medullary space 2 days post‐irradiation. The mice were divided into: 1) a sham‐operated group (Sham, n=7); 2) a MI group without GCSF injection (MI‐GCSF, n=7); and 3) a MI group with GCSF treatment (MI+GCSF, n=3). At 14 days post‐labeled MSCs transplantation, the two MI groups underwent surgery via permanent ligation of the left anterior descending coronary artery while the Sham group underwent open‐chest operation without perturbing the heart. The MI+GCSF group received subcutaneous GCSF injection 1 day post‐MI to enhance MSC mobilization. [formula omitted]‐weighted short‐axis cardiac MRI was performed at baseline, 3, 7 and 14 days (D14) post‐surgery. Results: The MRI signal at the MI site was temporally attenuated for both MI groups, with more attenuated for MI+GCSF group (SNR 18.17±6.06 vs 11.37±1.01 at D14, p<0.05), but not for Sham group (30.63±5.69). The MI+GCSF group showed a trend of cardiac function improvement relative to MI‐GCSF group (left ventricular ejection function 45.55±7.52% vs 40.80±16.69% at D14), but it is insignificant possibly due to the small sample number. Dual‐labeled cells were fluorescently detected around the infarction site. Conclusions: Migration of MPIO‐labeled MSCs from bone marrow into the injured heart can be temporally monitored by MRI and additional signal attenuation caused by GCSF treatment can be differentiated. Results of this study suggest a potential approach in cell therapy to noninvasively monitor migration of labeled cells as well as the mobilization modulation produced by pharmaceuticals in the MI related events.

AB - Purpose: To monitor the MPIO and enhanced green fluorescence protein (eGFP) labeled mesenchymal stem cells (MSCs) infiltration into the myocardial infarction (MI) site using [formula omitted]‐weighted MRI; To monitor the MRI contrast around the MI site post‐GCSF modulation. Methods: C57Bl/6 male mice (6–8 weeks old) were irradiated with an 8‐Gy dose. The labeled MSCs (3–7×105) were transplanted into the tibial medullary space 2 days post‐irradiation. The mice were divided into: 1) a sham‐operated group (Sham, n=7); 2) a MI group without GCSF injection (MI‐GCSF, n=7); and 3) a MI group with GCSF treatment (MI+GCSF, n=3). At 14 days post‐labeled MSCs transplantation, the two MI groups underwent surgery via permanent ligation of the left anterior descending coronary artery while the Sham group underwent open‐chest operation without perturbing the heart. The MI+GCSF group received subcutaneous GCSF injection 1 day post‐MI to enhance MSC mobilization. [formula omitted]‐weighted short‐axis cardiac MRI was performed at baseline, 3, 7 and 14 days (D14) post‐surgery. Results: The MRI signal at the MI site was temporally attenuated for both MI groups, with more attenuated for MI+GCSF group (SNR 18.17±6.06 vs 11.37±1.01 at D14, p<0.05), but not for Sham group (30.63±5.69). The MI+GCSF group showed a trend of cardiac function improvement relative to MI‐GCSF group (left ventricular ejection function 45.55±7.52% vs 40.80±16.69% at D14), but it is insignificant possibly due to the small sample number. Dual‐labeled cells were fluorescently detected around the infarction site. Conclusions: Migration of MPIO‐labeled MSCs from bone marrow into the injured heart can be temporally monitored by MRI and additional signal attenuation caused by GCSF treatment can be differentiated. Results of this study suggest a potential approach in cell therapy to noninvasively monitor migration of labeled cells as well as the mobilization modulation produced by pharmaceuticals in the MI related events.

UR - http://www.scopus.com/inward/record.url?scp=85024775480&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85024775480&partnerID=8YFLogxK

U2 - 10.1118/1.3182531

DO - 10.1118/1.3182531

M3 - Article

AN - SCOPUS:85024775480

VL - 36

JO - Medical Physics

JF - Medical Physics

SN - 0094-2405

IS - 6

ER -