TY - JOUR
T1 - 2-Methoxyestradiol causes matrix metalloproteinase 9-mediated transactivation of epidermal growth factor receptor and angiotensin type 1 receptor downregulation in rat aortic smooth muscle cells
AU - Ogola, Benard
AU - Zhang, Yong
AU - Iyer, Laxmi
AU - Thekkumkara, Thomas
N1 - Publisher Copyright:
Copyright © 2018 the American Physiological Society.
PY - 2018/5
Y1 - 2018/5
N2 - Studies have demonstrated the therapeutic potential of estrogen metabolite 2-methoxyestradiol (2ME2) in several cardiovascular disorders, including hypertension. However, the exact mechanism(s) remains unknown. In this study, primary rat aortic smooth muscle cells (RASMCs) were exposed to 2ME2, and angiotensin type 1 receptor (AT1R) expression, function, and associated signaling pathways were evaluated. In RASMCs, 2ME2 downregulated AT1R expression in a concentration- and time-dependent manner, which was correlated with reduced mRNA expression. The 2ME2 effect was through G protein-coupled receptor 30 (GPR30) that inhibits second messenger cAMP. Moreover, 2ME2 exposure phosphorylated ERK1/2 that was sensitive to MEK inhibitor PD98059. Selective epidermal growth factor receptor (EGFR) inhibitor AG1478 blocked 2ME2-induced EGFR transactivation and attenuated subsequent phosphorylation of ERK1/2 preventing AT1R downregulation. The transactivation was dependent on 2ME2-induced release of matrix metalloproteinase 9 (MMP9) and epidermal growth factor demonstrated by ELISA. Furthermore, transfection with small interfering (si) RNA targeting MMP9 impeded ERK1/2 activation and AT1R downregulation in response to 2ME2 and G1 stimulation. Interestingly, under similar conditions, stimulation of GPR30 with the selective agonist G1 elicited similar signaling pathways and downregulated the AT1R expression that was reversed by GPR30 antagonist G15. Furthermore, 2ME2 and G1 inhibited angiotensin II (ANG II) induced Ca2+ release, a response consistent with AT1R downregulation. Collectively, our study demonstrates for the first time that 2ME2 binding to GPR30 induces MMP9 specific transactivation of EGFR that mediates ERK1/2-dependent downregulation of AT1R in RASMCs. The study provides critical insights into the newly discovered role and signaling pathways of 2ME2 in the regulation of AT1R in vascular cells and its potential to be developed as a therapeutic agent that ameliorates hypertension.
AB - Studies have demonstrated the therapeutic potential of estrogen metabolite 2-methoxyestradiol (2ME2) in several cardiovascular disorders, including hypertension. However, the exact mechanism(s) remains unknown. In this study, primary rat aortic smooth muscle cells (RASMCs) were exposed to 2ME2, and angiotensin type 1 receptor (AT1R) expression, function, and associated signaling pathways were evaluated. In RASMCs, 2ME2 downregulated AT1R expression in a concentration- and time-dependent manner, which was correlated with reduced mRNA expression. The 2ME2 effect was through G protein-coupled receptor 30 (GPR30) that inhibits second messenger cAMP. Moreover, 2ME2 exposure phosphorylated ERK1/2 that was sensitive to MEK inhibitor PD98059. Selective epidermal growth factor receptor (EGFR) inhibitor AG1478 blocked 2ME2-induced EGFR transactivation and attenuated subsequent phosphorylation of ERK1/2 preventing AT1R downregulation. The transactivation was dependent on 2ME2-induced release of matrix metalloproteinase 9 (MMP9) and epidermal growth factor demonstrated by ELISA. Furthermore, transfection with small interfering (si) RNA targeting MMP9 impeded ERK1/2 activation and AT1R downregulation in response to 2ME2 and G1 stimulation. Interestingly, under similar conditions, stimulation of GPR30 with the selective agonist G1 elicited similar signaling pathways and downregulated the AT1R expression that was reversed by GPR30 antagonist G15. Furthermore, 2ME2 and G1 inhibited angiotensin II (ANG II) induced Ca2+ release, a response consistent with AT1R downregulation. Collectively, our study demonstrates for the first time that 2ME2 binding to GPR30 induces MMP9 specific transactivation of EGFR that mediates ERK1/2-dependent downregulation of AT1R in RASMCs. The study provides critical insights into the newly discovered role and signaling pathways of 2ME2 in the regulation of AT1R in vascular cells and its potential to be developed as a therapeutic agent that ameliorates hypertension.
KW - 2-methoxyestradiol
KW - Angiotensin type 1 receptor
KW - Epidermal growth factor receptor
KW - G protein-coupled receptor 30
KW - Hypertension
KW - Matrix metalloproteinase 9
KW - Rat aortic smooth muscle cells
UR - http://www.scopus.com/inward/record.url?scp=85061574563&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85061574563&partnerID=8YFLogxK
U2 - 10.1152/AJPCELL.00152.2017
DO - 10.1152/AJPCELL.00152.2017
M3 - Article
C2 - 29365274
AN - SCOPUS:85061574563
SN - 0363-6135
VL - 314
SP - C554-C568
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 5
ER -