A characterization of the mechanical behavior of resin-infiltrated dentin using nanoscopic Dynamic Mechanical Analysis

Heonjune Ryou, David H. Pashley, Franklin R. Tay, Dwayne Arola

Research output: Contribution to journalArticle

29 Scopus citations

Abstract

This study explored the spatial variations in mechanical behavior of resin-infiltrated dentin using nanoscopic Dynamic Mechanical Analysis (DMA). Objective The objectives were to: (1) evaluate the mechanical behavior of resin-infiltrated dentin using a scanning-based approach to nanoindentation, (2) identify contributions of the collagen matrix to time-dependent deformation of the hybrid layer, and (3) assess the importance of specimen hydration on the nanoDMA response. Methods Specimens of completely demineralized dentin infiltrated with commercial resin adhesive and control samples of resin adhesive were evaluated using a nanoindenter in scanning mode. The load and displacement responses were used to perform DMA and to estimate the complex (E*), storage (E′) and loss (E″) moduli over selected regions of evaluation. The importance of hydration on the mechanical behavior was also examined from a comparison of responses in the hydrated and dehydrated conditions. Results In the hydrated state the apparent complex, storage and loss moduli for the resin-infiltrated dentin samples were 3.5 ± 0.3 GPa, 3.4 ± 0.2 GPa and 0.9 ± 0.3 GPa, respectively. Those values for the resin adhesive control were 2.7 ± 0.3 GPa, 2.7 ± 0.3 GPa and 0.2 ± 0.02 GPa, respectively. Viscoelastic deformation of the resin-infiltrated collagen exceeded that occurring in regions of uniform resin adhesive. Though dehydration resulted in a significant increase in both the complex and storage moduli of the macro hybrid layer, the largest changes occurred to the resin adhesive. Significance The microstructure and hydration play critical roles on the mechanical behavior of the hybrid layer and nanoDMA provides a potent measurement tool for identifying the spatial variations.

Original languageEnglish (US)
Pages (from-to)719-728
Number of pages10
JournalDental Materials
Volume29
Issue number7
DOIs
StatePublished - Jul 1 2013

Keywords

  • Analysis
  • Dynamic
  • Elastic modulus
  • Hybrid layer
  • Mechanical
  • Nanoindentation

ASJC Scopus subject areas

  • Materials Science(all)
  • Dentistry(all)
  • Mechanics of Materials

Fingerprint Dive into the research topics of 'A characterization of the mechanical behavior of resin-infiltrated dentin using nanoscopic Dynamic Mechanical Analysis'. Together they form a unique fingerprint.

  • Cite this