A conundrum in molecular toxicology: Molecular and biological changes during neoplastic transformation of human cells

G. E. Milo, C. F. Shuler, H. Lee, B. C. Casto

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The process of multistage carcinogenesis lends itself to the concept that the effects of carcinogens are mediated through dose-related, multi-hit, linear changes. Multiple in vitro model systems have been developed that are designed to examine the cellular changes associated with the progression of cells through the different stages in the process; however, these systems may have inherent limitations due to the cell lines used for these studies, the manner of assessing the effects of the carcinogens, and the subsequent growth and differentiation of the exposed cells. Each of these variables results in increasing levels of uncertainty relative to the correlation of the events with the actual process of human tumor development. Therefore, the prediction of the ultimate effect of any carcinogen is difficult. Moreover, relationships between individual biological endpoints resulting from carcinogen treatment appear at best to be approximations. The presence of an activated carcinogen inside the cell can give rise to multiple outcomes, only some of which may be critical events. For example, site-specific modification of the 12th and 13th codons of H-ras is different than that in the adjacent 14th and 15th codons. It is interesting to speculate what effect these differences might have on a biological outcome, e.g., transformation to anchorage-independent growth. The use of different model systems to examine the effects of activated carcinogens also creates additional problems. Comparisons of in vitro transformed cells with similar cells isolated from human tumors indicate that the culture environment appears to influence the expression of a particular phenotype, in that human tumor cells in culture express many of the same parameters as those found in cells transformed with carcinogens in vitro. If the process of transformation is linear, then less aggressive phenotypes should progress to a more aggressive transformed stage. However, in carcinogen-transformed human cells, the populations exhibit phenotypic diversity in that many of the transformed cells differentiate and fial to continue to divide in culture. Historically, we have assumed only a limited role for epigenetic modulation of molecular changes that occur during progression; however, our data suggest quite strongly that nonmalignant tumor populations can be converted to a more malignant phenotype without additional mutations taking place and, conversely, malignant populations can be downregulated to a nontumorigenic phenotype. Tumor cell plasticity is not only a fundamental characteristic of diverse types of human tumors, but also appears as an integral characteristic of carcinogen-transformed cells in vitro.

Original languageEnglish (US)
Pages (from-to)329-345
Number of pages17
JournalCell Biology and Toxicology
Volume11
Issue number6
DOIs
StatePublished - Dec 1 1995
Externally publishedYes

Fingerprint

Neoplastic Cell Transformation
Carcinogens
Toxicology
Cells
Tumors
Phenotype
Neoplasms
Codon
Population
Linear transformations
Human Development
Growth
Cell culture
Epigenomics
Uncertainty
Plasticity
Cell Differentiation
Carcinogenesis
Down-Regulation
Cell Culture Techniques

Keywords

  • DNA adduction
  • adduct
  • carcinogenesis
  • human cell
  • transformation

ASJC Scopus subject areas

  • Toxicology
  • Cell Biology
  • Health, Toxicology and Mutagenesis

Cite this

A conundrum in molecular toxicology : Molecular and biological changes during neoplastic transformation of human cells. / Milo, G. E.; Shuler, C. F.; Lee, H.; Casto, B. C.

In: Cell Biology and Toxicology, Vol. 11, No. 6, 01.12.1995, p. 329-345.

Research output: Contribution to journalArticle

@article{2d8e8a4037bf44b8ac8387e5b13f32c0,
title = "A conundrum in molecular toxicology: Molecular and biological changes during neoplastic transformation of human cells",
abstract = "The process of multistage carcinogenesis lends itself to the concept that the effects of carcinogens are mediated through dose-related, multi-hit, linear changes. Multiple in vitro model systems have been developed that are designed to examine the cellular changes associated with the progression of cells through the different stages in the process; however, these systems may have inherent limitations due to the cell lines used for these studies, the manner of assessing the effects of the carcinogens, and the subsequent growth and differentiation of the exposed cells. Each of these variables results in increasing levels of uncertainty relative to the correlation of the events with the actual process of human tumor development. Therefore, the prediction of the ultimate effect of any carcinogen is difficult. Moreover, relationships between individual biological endpoints resulting from carcinogen treatment appear at best to be approximations. The presence of an activated carcinogen inside the cell can give rise to multiple outcomes, only some of which may be critical events. For example, site-specific modification of the 12th and 13th codons of H-ras is different than that in the adjacent 14th and 15th codons. It is interesting to speculate what effect these differences might have on a biological outcome, e.g., transformation to anchorage-independent growth. The use of different model systems to examine the effects of activated carcinogens also creates additional problems. Comparisons of in vitro transformed cells with similar cells isolated from human tumors indicate that the culture environment appears to influence the expression of a particular phenotype, in that human tumor cells in culture express many of the same parameters as those found in cells transformed with carcinogens in vitro. If the process of transformation is linear, then less aggressive phenotypes should progress to a more aggressive transformed stage. However, in carcinogen-transformed human cells, the populations exhibit phenotypic diversity in that many of the transformed cells differentiate and fial to continue to divide in culture. Historically, we have assumed only a limited role for epigenetic modulation of molecular changes that occur during progression; however, our data suggest quite strongly that nonmalignant tumor populations can be converted to a more malignant phenotype without additional mutations taking place and, conversely, malignant populations can be downregulated to a nontumorigenic phenotype. Tumor cell plasticity is not only a fundamental characteristic of diverse types of human tumors, but also appears as an integral characteristic of carcinogen-transformed cells in vitro.",
keywords = "DNA adduction, adduct, carcinogenesis, human cell, transformation",
author = "Milo, {G. E.} and Shuler, {C. F.} and H. Lee and Casto, {B. C.}",
year = "1995",
month = "12",
day = "1",
doi = "10.1007/BF01305905",
language = "English (US)",
volume = "11",
pages = "329--345",
journal = "Cell Biology and Toxicology",
issn = "0742-2091",
publisher = "Springer Netherlands",
number = "6",

}

TY - JOUR

T1 - A conundrum in molecular toxicology

T2 - Molecular and biological changes during neoplastic transformation of human cells

AU - Milo, G. E.

AU - Shuler, C. F.

AU - Lee, H.

AU - Casto, B. C.

PY - 1995/12/1

Y1 - 1995/12/1

N2 - The process of multistage carcinogenesis lends itself to the concept that the effects of carcinogens are mediated through dose-related, multi-hit, linear changes. Multiple in vitro model systems have been developed that are designed to examine the cellular changes associated with the progression of cells through the different stages in the process; however, these systems may have inherent limitations due to the cell lines used for these studies, the manner of assessing the effects of the carcinogens, and the subsequent growth and differentiation of the exposed cells. Each of these variables results in increasing levels of uncertainty relative to the correlation of the events with the actual process of human tumor development. Therefore, the prediction of the ultimate effect of any carcinogen is difficult. Moreover, relationships between individual biological endpoints resulting from carcinogen treatment appear at best to be approximations. The presence of an activated carcinogen inside the cell can give rise to multiple outcomes, only some of which may be critical events. For example, site-specific modification of the 12th and 13th codons of H-ras is different than that in the adjacent 14th and 15th codons. It is interesting to speculate what effect these differences might have on a biological outcome, e.g., transformation to anchorage-independent growth. The use of different model systems to examine the effects of activated carcinogens also creates additional problems. Comparisons of in vitro transformed cells with similar cells isolated from human tumors indicate that the culture environment appears to influence the expression of a particular phenotype, in that human tumor cells in culture express many of the same parameters as those found in cells transformed with carcinogens in vitro. If the process of transformation is linear, then less aggressive phenotypes should progress to a more aggressive transformed stage. However, in carcinogen-transformed human cells, the populations exhibit phenotypic diversity in that many of the transformed cells differentiate and fial to continue to divide in culture. Historically, we have assumed only a limited role for epigenetic modulation of molecular changes that occur during progression; however, our data suggest quite strongly that nonmalignant tumor populations can be converted to a more malignant phenotype without additional mutations taking place and, conversely, malignant populations can be downregulated to a nontumorigenic phenotype. Tumor cell plasticity is not only a fundamental characteristic of diverse types of human tumors, but also appears as an integral characteristic of carcinogen-transformed cells in vitro.

AB - The process of multistage carcinogenesis lends itself to the concept that the effects of carcinogens are mediated through dose-related, multi-hit, linear changes. Multiple in vitro model systems have been developed that are designed to examine the cellular changes associated with the progression of cells through the different stages in the process; however, these systems may have inherent limitations due to the cell lines used for these studies, the manner of assessing the effects of the carcinogens, and the subsequent growth and differentiation of the exposed cells. Each of these variables results in increasing levels of uncertainty relative to the correlation of the events with the actual process of human tumor development. Therefore, the prediction of the ultimate effect of any carcinogen is difficult. Moreover, relationships between individual biological endpoints resulting from carcinogen treatment appear at best to be approximations. The presence of an activated carcinogen inside the cell can give rise to multiple outcomes, only some of which may be critical events. For example, site-specific modification of the 12th and 13th codons of H-ras is different than that in the adjacent 14th and 15th codons. It is interesting to speculate what effect these differences might have on a biological outcome, e.g., transformation to anchorage-independent growth. The use of different model systems to examine the effects of activated carcinogens also creates additional problems. Comparisons of in vitro transformed cells with similar cells isolated from human tumors indicate that the culture environment appears to influence the expression of a particular phenotype, in that human tumor cells in culture express many of the same parameters as those found in cells transformed with carcinogens in vitro. If the process of transformation is linear, then less aggressive phenotypes should progress to a more aggressive transformed stage. However, in carcinogen-transformed human cells, the populations exhibit phenotypic diversity in that many of the transformed cells differentiate and fial to continue to divide in culture. Historically, we have assumed only a limited role for epigenetic modulation of molecular changes that occur during progression; however, our data suggest quite strongly that nonmalignant tumor populations can be converted to a more malignant phenotype without additional mutations taking place and, conversely, malignant populations can be downregulated to a nontumorigenic phenotype. Tumor cell plasticity is not only a fundamental characteristic of diverse types of human tumors, but also appears as an integral characteristic of carcinogen-transformed cells in vitro.

KW - DNA adduction

KW - adduct

KW - carcinogenesis

KW - human cell

KW - transformation

UR - http://www.scopus.com/inward/record.url?scp=0028791353&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028791353&partnerID=8YFLogxK

U2 - 10.1007/BF01305905

DO - 10.1007/BF01305905

M3 - Article

C2 - 8788209

AN - SCOPUS:0028791353

VL - 11

SP - 329

EP - 345

JO - Cell Biology and Toxicology

JF - Cell Biology and Toxicology

SN - 0742-2091

IS - 6

ER -