Altered energy state reversibly controls smooth muscle contractile function in human saphenous vein during acute hypoxia-reoxygenation: Role of glycogen, AMP-activated protein kinase, and insulin-independent glucose uptake

Rajkumar Pyla, Prahalathan Pichavaram, Arwa Fairaq, Mary Anne Park, Mark Kozak, Manjeshwar Vinayak Kamath, Vijaykumar Surendrakant Patel, Lakshman Segar

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Hypoxia is known to promote vasodilation of coronary vessels through several mediators including cardiac-derived adenosine and endothelium-derived prostanoids and nitric oxide. To date, the impact of endogenous glycogen depletion in vascular smooth muscle and the resultant alterations in cellular energy state (e.g., AMP-activated protein kinase, AMPK) on the contractile response to G protein-coupled receptor agonists (e.g., serotonin, 5-HT) has not yet been studied. In the present study, ex vivo exposure of endothelium-denuded human saphenous vein rings to hypoxic and glucose-deprived conditions during KCl-induced contractions for 30 min resulted in a marked depletion of endogenous glycogen by ∼80% (from ∼1.78 μmol/g under normoxia to ∼0.36 μmol/g under hypoxia). Importantly, glycogen-depleted HSV rings, which were maintained under hypoxia/reoxygenation and glucose-deprived conditions, exhibited significant increases in basal AMPK phosphorylation (∼6-fold ↑) and 5-HT-induced AMPK phosphorylation (∼19-fold ↑) with an accompanying suppression of 5-HT-induced maximal contractile response (∼68% ↓), compared with respective controls. Exposure of glycogen-depleted HSV rings to exogenous D-glucose, but not the inactive glucose analogs, prevented the exaggerated increase in 5-HT-induced AMPK phosphorylation and restored 5-HT-induced maximal contractile response. In addition, the ability of exogenous D-glucose to rescue cellular stress and impaired contractile function occurred through GLUT1-mediated but insulin/GLUT4-independent mechanisms. Together, the present findings from clinically-relevant human saphenous vein suggest that the loss of endogenous glycogen in vascular smooth muscle and the resultant accentuation of AMPK phosphorylation by GPCR agonists may constitute a yet another mechanism of metabolic vasodilation of coronary vessels in ischemic heart disease.

Original languageEnglish (US)
Pages (from-to)77-88
Number of pages12
JournalBiochemical Pharmacology
Volume97
Issue number1
DOIs
StatePublished - Aug 22 2015

Fingerprint

AMP-Activated Protein Kinases
Saphenous Vein
Glycogen
Electron energy levels
Smooth Muscle
Muscle
Serotonin
Phosphorylation
Insulin
Glucose
Vascular Smooth Muscle
Vasodilation
Coronary Vessels
Serotonin Receptor Agonists
G-Protein-Coupled Receptors
Adenosine
Prostaglandins
Endothelium
Myocardial Ischemia
Nitric Oxide

Keywords

  • AMPK
  • Glycogen
  • Hypoxia
  • Serotonin
  • Vascular smooth muscle

ASJC Scopus subject areas

  • Biochemistry
  • Pharmacology

Cite this

@article{f13202210d514af09aa859bb72fb417a,
title = "Altered energy state reversibly controls smooth muscle contractile function in human saphenous vein during acute hypoxia-reoxygenation: Role of glycogen, AMP-activated protein kinase, and insulin-independent glucose uptake",
abstract = "Hypoxia is known to promote vasodilation of coronary vessels through several mediators including cardiac-derived adenosine and endothelium-derived prostanoids and nitric oxide. To date, the impact of endogenous glycogen depletion in vascular smooth muscle and the resultant alterations in cellular energy state (e.g., AMP-activated protein kinase, AMPK) on the contractile response to G protein-coupled receptor agonists (e.g., serotonin, 5-HT) has not yet been studied. In the present study, ex vivo exposure of endothelium-denuded human saphenous vein rings to hypoxic and glucose-deprived conditions during KCl-induced contractions for 30 min resulted in a marked depletion of endogenous glycogen by ∼80{\%} (from ∼1.78 μmol/g under normoxia to ∼0.36 μmol/g under hypoxia). Importantly, glycogen-depleted HSV rings, which were maintained under hypoxia/reoxygenation and glucose-deprived conditions, exhibited significant increases in basal AMPK phosphorylation (∼6-fold ↑) and 5-HT-induced AMPK phosphorylation (∼19-fold ↑) with an accompanying suppression of 5-HT-induced maximal contractile response (∼68{\%} ↓), compared with respective controls. Exposure of glycogen-depleted HSV rings to exogenous D-glucose, but not the inactive glucose analogs, prevented the exaggerated increase in 5-HT-induced AMPK phosphorylation and restored 5-HT-induced maximal contractile response. In addition, the ability of exogenous D-glucose to rescue cellular stress and impaired contractile function occurred through GLUT1-mediated but insulin/GLUT4-independent mechanisms. Together, the present findings from clinically-relevant human saphenous vein suggest that the loss of endogenous glycogen in vascular smooth muscle and the resultant accentuation of AMPK phosphorylation by GPCR agonists may constitute a yet another mechanism of metabolic vasodilation of coronary vessels in ischemic heart disease.",
keywords = "AMPK, Glycogen, Hypoxia, Serotonin, Vascular smooth muscle",
author = "Rajkumar Pyla and Prahalathan Pichavaram and Arwa Fairaq and Park, {Mary Anne} and Mark Kozak and Kamath, {Manjeshwar Vinayak} and Patel, {Vijaykumar Surendrakant} and Lakshman Segar",
year = "2015",
month = "8",
day = "22",
doi = "10.1016/j.bcp.2015.06.036",
language = "English (US)",
volume = "97",
pages = "77--88",
journal = "Biochemical Pharmacology",
issn = "0006-2952",
publisher = "Elsevier Inc.",
number = "1",

}

TY - JOUR

T1 - Altered energy state reversibly controls smooth muscle contractile function in human saphenous vein during acute hypoxia-reoxygenation

T2 - Role of glycogen, AMP-activated protein kinase, and insulin-independent glucose uptake

AU - Pyla, Rajkumar

AU - Pichavaram, Prahalathan

AU - Fairaq, Arwa

AU - Park, Mary Anne

AU - Kozak, Mark

AU - Kamath, Manjeshwar Vinayak

AU - Patel, Vijaykumar Surendrakant

AU - Segar, Lakshman

PY - 2015/8/22

Y1 - 2015/8/22

N2 - Hypoxia is known to promote vasodilation of coronary vessels through several mediators including cardiac-derived adenosine and endothelium-derived prostanoids and nitric oxide. To date, the impact of endogenous glycogen depletion in vascular smooth muscle and the resultant alterations in cellular energy state (e.g., AMP-activated protein kinase, AMPK) on the contractile response to G protein-coupled receptor agonists (e.g., serotonin, 5-HT) has not yet been studied. In the present study, ex vivo exposure of endothelium-denuded human saphenous vein rings to hypoxic and glucose-deprived conditions during KCl-induced contractions for 30 min resulted in a marked depletion of endogenous glycogen by ∼80% (from ∼1.78 μmol/g under normoxia to ∼0.36 μmol/g under hypoxia). Importantly, glycogen-depleted HSV rings, which were maintained under hypoxia/reoxygenation and glucose-deprived conditions, exhibited significant increases in basal AMPK phosphorylation (∼6-fold ↑) and 5-HT-induced AMPK phosphorylation (∼19-fold ↑) with an accompanying suppression of 5-HT-induced maximal contractile response (∼68% ↓), compared with respective controls. Exposure of glycogen-depleted HSV rings to exogenous D-glucose, but not the inactive glucose analogs, prevented the exaggerated increase in 5-HT-induced AMPK phosphorylation and restored 5-HT-induced maximal contractile response. In addition, the ability of exogenous D-glucose to rescue cellular stress and impaired contractile function occurred through GLUT1-mediated but insulin/GLUT4-independent mechanisms. Together, the present findings from clinically-relevant human saphenous vein suggest that the loss of endogenous glycogen in vascular smooth muscle and the resultant accentuation of AMPK phosphorylation by GPCR agonists may constitute a yet another mechanism of metabolic vasodilation of coronary vessels in ischemic heart disease.

AB - Hypoxia is known to promote vasodilation of coronary vessels through several mediators including cardiac-derived adenosine and endothelium-derived prostanoids and nitric oxide. To date, the impact of endogenous glycogen depletion in vascular smooth muscle and the resultant alterations in cellular energy state (e.g., AMP-activated protein kinase, AMPK) on the contractile response to G protein-coupled receptor agonists (e.g., serotonin, 5-HT) has not yet been studied. In the present study, ex vivo exposure of endothelium-denuded human saphenous vein rings to hypoxic and glucose-deprived conditions during KCl-induced contractions for 30 min resulted in a marked depletion of endogenous glycogen by ∼80% (from ∼1.78 μmol/g under normoxia to ∼0.36 μmol/g under hypoxia). Importantly, glycogen-depleted HSV rings, which were maintained under hypoxia/reoxygenation and glucose-deprived conditions, exhibited significant increases in basal AMPK phosphorylation (∼6-fold ↑) and 5-HT-induced AMPK phosphorylation (∼19-fold ↑) with an accompanying suppression of 5-HT-induced maximal contractile response (∼68% ↓), compared with respective controls. Exposure of glycogen-depleted HSV rings to exogenous D-glucose, but not the inactive glucose analogs, prevented the exaggerated increase in 5-HT-induced AMPK phosphorylation and restored 5-HT-induced maximal contractile response. In addition, the ability of exogenous D-glucose to rescue cellular stress and impaired contractile function occurred through GLUT1-mediated but insulin/GLUT4-independent mechanisms. Together, the present findings from clinically-relevant human saphenous vein suggest that the loss of endogenous glycogen in vascular smooth muscle and the resultant accentuation of AMPK phosphorylation by GPCR agonists may constitute a yet another mechanism of metabolic vasodilation of coronary vessels in ischemic heart disease.

KW - AMPK

KW - Glycogen

KW - Hypoxia

KW - Serotonin

KW - Vascular smooth muscle

UR - http://www.scopus.com/inward/record.url?scp=84939564337&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84939564337&partnerID=8YFLogxK

U2 - 10.1016/j.bcp.2015.06.036

DO - 10.1016/j.bcp.2015.06.036

M3 - Article

C2 - 26212549

AN - SCOPUS:84939564337

VL - 97

SP - 77

EP - 88

JO - Biochemical Pharmacology

JF - Biochemical Pharmacology

SN - 0006-2952

IS - 1

ER -