Analysis of eicosanoid mediation of the renal functional effects of hyperchloremia

Bardia Askari, Caroline P. Bell-Quilley, David J Fulton, John Quilley, John C. McGiff

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Depression of GFR and antinatriuresis in response to high chloride has been linked to a cyclooxygenase (COX)-dependent mechanism involving thromboxane A2 (TxA2) and prostaglandin endoperoxide (PGH2), because inhibition of COX prevented the fall in GFR and antinatriuresis produced by hyperchloremia. However, hyperchloremia did not increase, but unexpectedly decreased, renal prostaglandin and TxA2 efflux (Yin etal., 1995). To resolve questions regarding the role of eicosanoids in mediating the renal functional effects of high chloride (117 mM), by stimulating either TxA2 synthesis or TxA2/PGH2 receptors, we compared the ability of indomethacin to block high- chloride effects in the rat isolated kidney with that of BMS 180291 and SQ 29548, antagonists of the TxA2/PGH2 receptor. These antagonists differ in terms of their selectivity and their capacity to inhibit isoforms of the TxA2/PGH2 receptor. Indomethacin and SQ 29548 had identical actions, preventing the decrease of GFR and antinatriuresis evoked by hyperchloremia, e.g., sodium excretion rate in the SQ 29548 and indomethacin groups increased to 7.2 ± 1.3 and 7.1 ± 1.2 μEq/min, respectively, compared with 2.6 ± 0.7 μEq/min in the control group. In contrast, neither BMS 180291 nor the TxA2 synthase inhibitors, OKY 046 and CGS 13080, modified the negative effects of high chloride on GFR or sodium excretion. These results argue against either TxA2 or PGH2 acting as mediator of the effects of high chloride on renal function and suggest a product of COX activity such as a 20-HETE analog of prostaglandin endoperoxide. Evidence to support this proposal was obtained: 1) Hyperohloremia increased 20-HETE release from the rat kidney by 2-fold when compared with low-chloride conditions of renal perfusion. 2) The renal vasoconstrictor action of 20-HETE was shown to be dependent on COX activity and to be antagonized by blockade of the TxA2/PGH2 receptor.

Original languageEnglish (US)
Pages (from-to)101-107
Number of pages7
JournalJournal of Pharmacology and Experimental Therapeutics
Volume282
Issue number1
StatePublished - Jul 1 1997
Externally publishedYes

Fingerprint

Prostaglandin H2 Receptors Thromboxane A2
Eicosanoids
Thromboxane A2
Kidney
Chlorides
Prostaglandin-Endoperoxide Synthases
Indomethacin
Prostaglandin H2
Synthetic Prostaglandin Endoperoxides
Prostaglandin Endoperoxides
Sodium
Vasoconstrictor Agents
Protein Isoforms
Perfusion
Control Groups

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology

Cite this

Analysis of eicosanoid mediation of the renal functional effects of hyperchloremia. / Askari, Bardia; Bell-Quilley, Caroline P.; Fulton, David J; Quilley, John; McGiff, John C.

In: Journal of Pharmacology and Experimental Therapeutics, Vol. 282, No. 1, 01.07.1997, p. 101-107.

Research output: Contribution to journalArticle

Askari, Bardia ; Bell-Quilley, Caroline P. ; Fulton, David J ; Quilley, John ; McGiff, John C. / Analysis of eicosanoid mediation of the renal functional effects of hyperchloremia. In: Journal of Pharmacology and Experimental Therapeutics. 1997 ; Vol. 282, No. 1. pp. 101-107.
@article{7e691a73f7234ca6ada6d3b573d6f64c,
title = "Analysis of eicosanoid mediation of the renal functional effects of hyperchloremia",
abstract = "Depression of GFR and antinatriuresis in response to high chloride has been linked to a cyclooxygenase (COX)-dependent mechanism involving thromboxane A2 (TxA2) and prostaglandin endoperoxide (PGH2), because inhibition of COX prevented the fall in GFR and antinatriuresis produced by hyperchloremia. However, hyperchloremia did not increase, but unexpectedly decreased, renal prostaglandin and TxA2 efflux (Yin etal., 1995). To resolve questions regarding the role of eicosanoids in mediating the renal functional effects of high chloride (117 mM), by stimulating either TxA2 synthesis or TxA2/PGH2 receptors, we compared the ability of indomethacin to block high- chloride effects in the rat isolated kidney with that of BMS 180291 and SQ 29548, antagonists of the TxA2/PGH2 receptor. These antagonists differ in terms of their selectivity and their capacity to inhibit isoforms of the TxA2/PGH2 receptor. Indomethacin and SQ 29548 had identical actions, preventing the decrease of GFR and antinatriuresis evoked by hyperchloremia, e.g., sodium excretion rate in the SQ 29548 and indomethacin groups increased to 7.2 ± 1.3 and 7.1 ± 1.2 μEq/min, respectively, compared with 2.6 ± 0.7 μEq/min in the control group. In contrast, neither BMS 180291 nor the TxA2 synthase inhibitors, OKY 046 and CGS 13080, modified the negative effects of high chloride on GFR or sodium excretion. These results argue against either TxA2 or PGH2 acting as mediator of the effects of high chloride on renal function and suggest a product of COX activity such as a 20-HETE analog of prostaglandin endoperoxide. Evidence to support this proposal was obtained: 1) Hyperohloremia increased 20-HETE release from the rat kidney by 2-fold when compared with low-chloride conditions of renal perfusion. 2) The renal vasoconstrictor action of 20-HETE was shown to be dependent on COX activity and to be antagonized by blockade of the TxA2/PGH2 receptor.",
author = "Bardia Askari and Bell-Quilley, {Caroline P.} and Fulton, {David J} and John Quilley and McGiff, {John C.}",
year = "1997",
month = "7",
day = "1",
language = "English (US)",
volume = "282",
pages = "101--107",
journal = "The Journal of pharmacology and experimental therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "1",

}

TY - JOUR

T1 - Analysis of eicosanoid mediation of the renal functional effects of hyperchloremia

AU - Askari, Bardia

AU - Bell-Quilley, Caroline P.

AU - Fulton, David J

AU - Quilley, John

AU - McGiff, John C.

PY - 1997/7/1

Y1 - 1997/7/1

N2 - Depression of GFR and antinatriuresis in response to high chloride has been linked to a cyclooxygenase (COX)-dependent mechanism involving thromboxane A2 (TxA2) and prostaglandin endoperoxide (PGH2), because inhibition of COX prevented the fall in GFR and antinatriuresis produced by hyperchloremia. However, hyperchloremia did not increase, but unexpectedly decreased, renal prostaglandin and TxA2 efflux (Yin etal., 1995). To resolve questions regarding the role of eicosanoids in mediating the renal functional effects of high chloride (117 mM), by stimulating either TxA2 synthesis or TxA2/PGH2 receptors, we compared the ability of indomethacin to block high- chloride effects in the rat isolated kidney with that of BMS 180291 and SQ 29548, antagonists of the TxA2/PGH2 receptor. These antagonists differ in terms of their selectivity and their capacity to inhibit isoforms of the TxA2/PGH2 receptor. Indomethacin and SQ 29548 had identical actions, preventing the decrease of GFR and antinatriuresis evoked by hyperchloremia, e.g., sodium excretion rate in the SQ 29548 and indomethacin groups increased to 7.2 ± 1.3 and 7.1 ± 1.2 μEq/min, respectively, compared with 2.6 ± 0.7 μEq/min in the control group. In contrast, neither BMS 180291 nor the TxA2 synthase inhibitors, OKY 046 and CGS 13080, modified the negative effects of high chloride on GFR or sodium excretion. These results argue against either TxA2 or PGH2 acting as mediator of the effects of high chloride on renal function and suggest a product of COX activity such as a 20-HETE analog of prostaglandin endoperoxide. Evidence to support this proposal was obtained: 1) Hyperohloremia increased 20-HETE release from the rat kidney by 2-fold when compared with low-chloride conditions of renal perfusion. 2) The renal vasoconstrictor action of 20-HETE was shown to be dependent on COX activity and to be antagonized by blockade of the TxA2/PGH2 receptor.

AB - Depression of GFR and antinatriuresis in response to high chloride has been linked to a cyclooxygenase (COX)-dependent mechanism involving thromboxane A2 (TxA2) and prostaglandin endoperoxide (PGH2), because inhibition of COX prevented the fall in GFR and antinatriuresis produced by hyperchloremia. However, hyperchloremia did not increase, but unexpectedly decreased, renal prostaglandin and TxA2 efflux (Yin etal., 1995). To resolve questions regarding the role of eicosanoids in mediating the renal functional effects of high chloride (117 mM), by stimulating either TxA2 synthesis or TxA2/PGH2 receptors, we compared the ability of indomethacin to block high- chloride effects in the rat isolated kidney with that of BMS 180291 and SQ 29548, antagonists of the TxA2/PGH2 receptor. These antagonists differ in terms of their selectivity and their capacity to inhibit isoforms of the TxA2/PGH2 receptor. Indomethacin and SQ 29548 had identical actions, preventing the decrease of GFR and antinatriuresis evoked by hyperchloremia, e.g., sodium excretion rate in the SQ 29548 and indomethacin groups increased to 7.2 ± 1.3 and 7.1 ± 1.2 μEq/min, respectively, compared with 2.6 ± 0.7 μEq/min in the control group. In contrast, neither BMS 180291 nor the TxA2 synthase inhibitors, OKY 046 and CGS 13080, modified the negative effects of high chloride on GFR or sodium excretion. These results argue against either TxA2 or PGH2 acting as mediator of the effects of high chloride on renal function and suggest a product of COX activity such as a 20-HETE analog of prostaglandin endoperoxide. Evidence to support this proposal was obtained: 1) Hyperohloremia increased 20-HETE release from the rat kidney by 2-fold when compared with low-chloride conditions of renal perfusion. 2) The renal vasoconstrictor action of 20-HETE was shown to be dependent on COX activity and to be antagonized by blockade of the TxA2/PGH2 receptor.

UR - http://www.scopus.com/inward/record.url?scp=0030850395&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030850395&partnerID=8YFLogxK

M3 - Article

VL - 282

SP - 101

EP - 107

JO - The Journal of pharmacology and experimental therapeutics

JF - The Journal of pharmacology and experimental therapeutics

SN - 0022-3565

IS - 1

ER -