Abstract
PURPOSE: Mice homozygous for the vitiligo mutation of the microphthalmia (Mitf) gene have a retinal degeneration characterized by slow loss of photoreceptor cells and compromised retinal pigment epithelial (RPE) structure and function. The levels of retinyl esters, which are essential for generation of 11-cis-retinaldehyde for the formation of rhodopsin, were reported previously to be elevated by 6 weeks postnatally in the RPE of vitiligo mutant mice. The purpose of the present study was to determine whether this elevation was due to increased activity of lecithin:retinol acyl transferase (LRAT) the enzyme that converts all-trans-retinol to retinyl esters. METHODS: Retinoids extracted from the RPE and neural retina of mutant and normal mice ages 2, 4, 6 and 8 weeks were analyzed by reversed-phase HPLC. The esterification capacity of the RPE to convert 3H-retinol to 3H-retinyl ester was determined by HPLC in mutant and normal mice at 3 and 9 weeks. RESULTS: Retinyl ester levels were elevated significantly in the mutant RPE as early as postnatal week 2 and were four-fold greater by 8 weeks. The esterification assay indicated no significant differences between mutants and controls at 3 weeks. At 9 weeks, the esterification activity of the mutant RPE was significantly reduced compared to controls rather than elevated. CONCLUSIONS: The data suggest that the accumulation of retinyl esters is not due to increased LRAT activity. Alternative explanations for the retinyl ester accumulation are discussed.
Original language | English (US) |
---|---|
Number of pages | 1 |
Journal | Molecular Vision |
Volume | 3 |
State | Published - Jan 1 1997 |
Fingerprint
ASJC Scopus subject areas
- Ophthalmology
Cite this
Analysis of esterification of retinoids in the retinal pigmented epithelium of the Mitf-vit (vitiligo) mutant mouse. / Evans, B. L.; Smith, Sylvia B.
In: Molecular Vision, Vol. 3, 01.01.1997.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Analysis of esterification of retinoids in the retinal pigmented epithelium of the Mitf-vit (vitiligo) mutant mouse.
AU - Evans, B. L.
AU - Smith, Sylvia B
PY - 1997/1/1
Y1 - 1997/1/1
N2 - PURPOSE: Mice homozygous for the vitiligo mutation of the microphthalmia (Mitf) gene have a retinal degeneration characterized by slow loss of photoreceptor cells and compromised retinal pigment epithelial (RPE) structure and function. The levels of retinyl esters, which are essential for generation of 11-cis-retinaldehyde for the formation of rhodopsin, were reported previously to be elevated by 6 weeks postnatally in the RPE of vitiligo mutant mice. The purpose of the present study was to determine whether this elevation was due to increased activity of lecithin:retinol acyl transferase (LRAT) the enzyme that converts all-trans-retinol to retinyl esters. METHODS: Retinoids extracted from the RPE and neural retina of mutant and normal mice ages 2, 4, 6 and 8 weeks were analyzed by reversed-phase HPLC. The esterification capacity of the RPE to convert 3H-retinol to 3H-retinyl ester was determined by HPLC in mutant and normal mice at 3 and 9 weeks. RESULTS: Retinyl ester levels were elevated significantly in the mutant RPE as early as postnatal week 2 and were four-fold greater by 8 weeks. The esterification assay indicated no significant differences between mutants and controls at 3 weeks. At 9 weeks, the esterification activity of the mutant RPE was significantly reduced compared to controls rather than elevated. CONCLUSIONS: The data suggest that the accumulation of retinyl esters is not due to increased LRAT activity. Alternative explanations for the retinyl ester accumulation are discussed.
AB - PURPOSE: Mice homozygous for the vitiligo mutation of the microphthalmia (Mitf) gene have a retinal degeneration characterized by slow loss of photoreceptor cells and compromised retinal pigment epithelial (RPE) structure and function. The levels of retinyl esters, which are essential for generation of 11-cis-retinaldehyde for the formation of rhodopsin, were reported previously to be elevated by 6 weeks postnatally in the RPE of vitiligo mutant mice. The purpose of the present study was to determine whether this elevation was due to increased activity of lecithin:retinol acyl transferase (LRAT) the enzyme that converts all-trans-retinol to retinyl esters. METHODS: Retinoids extracted from the RPE and neural retina of mutant and normal mice ages 2, 4, 6 and 8 weeks were analyzed by reversed-phase HPLC. The esterification capacity of the RPE to convert 3H-retinol to 3H-retinyl ester was determined by HPLC in mutant and normal mice at 3 and 9 weeks. RESULTS: Retinyl ester levels were elevated significantly in the mutant RPE as early as postnatal week 2 and were four-fold greater by 8 weeks. The esterification assay indicated no significant differences between mutants and controls at 3 weeks. At 9 weeks, the esterification activity of the mutant RPE was significantly reduced compared to controls rather than elevated. CONCLUSIONS: The data suggest that the accumulation of retinyl esters is not due to increased LRAT activity. Alternative explanations for the retinyl ester accumulation are discussed.
UR - http://www.scopus.com/inward/record.url?scp=0031585370&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031585370&partnerID=8YFLogxK
M3 - Article
C2 - 9383334
AN - SCOPUS:0031585370
VL - 3
JO - Molecular Vision
JF - Molecular Vision
SN - 1090-0535
ER -