Association of fat to lean mass ratio with metabolic dysfunction in women with polycystic ovary syndrome

Uche Ezeh, Marita Pall, Ruchi Mathur, Ricardo Azziz

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

STUDY QUESTION Are differences in metabolic dysfunction between polycystic ovary syndrome (PCOS) and control women related to differences in their fat to lean mass (F/L) ratio? SUMMARY ANSWER Compared with controls of similar body mass index (BMI), women with PCOS demonstrate adverse body composition characterized by increased whole body fat relative to lean mass (i.e. a higher F/L ratio), which is associated with differences in metabolic dysfunction between the two groups. WHAT IS KNOWN ALREADY Previous studies examining body composition and insulin resistance (IR) in PCOS have yielded conflicting results. Excess total fat mass (i.e. fat mass index [fat BMI]) correlates with IR, whereas increased total lean mass (i.e. lean BMI) has been associated with higher insulin sensitivity. However, the role of the F/L ratio, which integrates the antagonistic effects of both fat and lean mass depots, on IR in PCOS, has not been investigated. STUDY DESIGN, SIZE, DURATION We conducted a prospective cross-sectional study of 120 women between the ages of 22-44 years to study the relation of the F/L ratio with measures of insulin action and secretion in both steady and dynamic states. PARTICIPANTS/MATERIALS, SETTING, METHODS Sixty PCOS (by NIH, 1990 criteria) and 60 control (age, race and BMI-matched) women were prospectively studied for body composition (by bioelectrical impedance analysis [BIA]) and basal IR and insulin secretion by the homeostasis model assessment (HOMA-IR and HOMA-%β-cell function, respectively) in a tertiary care academic referral center. A subset of 12 PCOS and 12 matched control women also underwent a modified frequently sampled intravenous glucose tolerance test (FSIVGTT) to determine glucose uptake and insulin secretion in dynamic state. MAIN RESULTS AND THE ROLE OF CHANCE Our results indicate that women with PCOS demonstrated greater degrees of hyperandrogenism, and higher waist-to-hip ratio (WHR), %body fat, fat BMI, F/L, fasting insulin levels, and HOMA-IR and HOMA-%β-cell values, than controls. In models adjusted for WHR and free testosterone and diagnostic groups, fasting insulin levels, HOMA-IR, and HOMA-%beta cell function were positively related to the F/L ratio. A positive relationship was also found in both study groups between F/L and the FSIVGTT measures insulin sensitivity (Si) and acute insulin response to glucose (AIRg). The F/L tended to negatively correlate with glucose effectiveness or non-insulin-mediated glucose transport (Sg) only in PCOS women. LIMITATIONS, REASONS FOR CAUTION Regional tissue sub-compartments, which have been shown to have potential independent associations with metabolic variables, cannot be determined by bioelectrical impedance analysis (BIA). WIDER IMPLICATIONS OF THE FINDINGS The current results suggest that BIA could be used to assess F/L in place of dual energy X-ray absorptiometry (DXA) in research protocols, and that F/L could possibly be used as an alternative to WHR as a surrogate marker of metabolic dysfunction in clinical practice. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants R01-DK073632 and R01-HD29364 from the NIH and an endowment of the Helping Hand of Los Angeles, Inc. (to R.A.). The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER Not applicable.

Original languageEnglish (US)
Pages (from-to)1508-1517
Number of pages10
JournalHuman Reproduction
Volume29
Issue number7
DOIs
StatePublished - Jan 1 2014

Fingerprint

Polycystic Ovary Syndrome
Insulin Resistance
Fats
Insulin
Body Mass Index
Waist-Hip Ratio
Body Composition
Electric Impedance
Glucose
Fat Body
Glucose Tolerance Test
Adipose Tissue
Fasting
Hyperandrogenism
Los Angeles
Organized Financing
Photon Absorptiometry
Financial Management
Tertiary Healthcare
Testosterone

Keywords

  • PCOS
  • androgens
  • fat body mass
  • insulin resistance
  • lean body mass

ASJC Scopus subject areas

  • Reproductive Medicine
  • Obstetrics and Gynecology

Cite this

Association of fat to lean mass ratio with metabolic dysfunction in women with polycystic ovary syndrome. / Ezeh, Uche; Pall, Marita; Mathur, Ruchi; Azziz, Ricardo.

In: Human Reproduction, Vol. 29, No. 7, 01.01.2014, p. 1508-1517.

Research output: Contribution to journalArticle

Ezeh, Uche ; Pall, Marita ; Mathur, Ruchi ; Azziz, Ricardo. / Association of fat to lean mass ratio with metabolic dysfunction in women with polycystic ovary syndrome. In: Human Reproduction. 2014 ; Vol. 29, No. 7. pp. 1508-1517.
@article{7c62e657945149068cad784f2ba246cc,
title = "Association of fat to lean mass ratio with metabolic dysfunction in women with polycystic ovary syndrome",
abstract = "STUDY QUESTION Are differences in metabolic dysfunction between polycystic ovary syndrome (PCOS) and control women related to differences in their fat to lean mass (F/L) ratio? SUMMARY ANSWER Compared with controls of similar body mass index (BMI), women with PCOS demonstrate adverse body composition characterized by increased whole body fat relative to lean mass (i.e. a higher F/L ratio), which is associated with differences in metabolic dysfunction between the two groups. WHAT IS KNOWN ALREADY Previous studies examining body composition and insulin resistance (IR) in PCOS have yielded conflicting results. Excess total fat mass (i.e. fat mass index [fat BMI]) correlates with IR, whereas increased total lean mass (i.e. lean BMI) has been associated with higher insulin sensitivity. However, the role of the F/L ratio, which integrates the antagonistic effects of both fat and lean mass depots, on IR in PCOS, has not been investigated. STUDY DESIGN, SIZE, DURATION We conducted a prospective cross-sectional study of 120 women between the ages of 22-44 years to study the relation of the F/L ratio with measures of insulin action and secretion in both steady and dynamic states. PARTICIPANTS/MATERIALS, SETTING, METHODS Sixty PCOS (by NIH, 1990 criteria) and 60 control (age, race and BMI-matched) women were prospectively studied for body composition (by bioelectrical impedance analysis [BIA]) and basal IR and insulin secretion by the homeostasis model assessment (HOMA-IR and HOMA-{\%}β-cell function, respectively) in a tertiary care academic referral center. A subset of 12 PCOS and 12 matched control women also underwent a modified frequently sampled intravenous glucose tolerance test (FSIVGTT) to determine glucose uptake and insulin secretion in dynamic state. MAIN RESULTS AND THE ROLE OF CHANCE Our results indicate that women with PCOS demonstrated greater degrees of hyperandrogenism, and higher waist-to-hip ratio (WHR), {\%}body fat, fat BMI, F/L, fasting insulin levels, and HOMA-IR and HOMA-{\%}β-cell values, than controls. In models adjusted for WHR and free testosterone and diagnostic groups, fasting insulin levels, HOMA-IR, and HOMA-{\%}beta cell function were positively related to the F/L ratio. A positive relationship was also found in both study groups between F/L and the FSIVGTT measures insulin sensitivity (Si) and acute insulin response to glucose (AIRg). The F/L tended to negatively correlate with glucose effectiveness or non-insulin-mediated glucose transport (Sg) only in PCOS women. LIMITATIONS, REASONS FOR CAUTION Regional tissue sub-compartments, which have been shown to have potential independent associations with metabolic variables, cannot be determined by bioelectrical impedance analysis (BIA). WIDER IMPLICATIONS OF THE FINDINGS The current results suggest that BIA could be used to assess F/L in place of dual energy X-ray absorptiometry (DXA) in research protocols, and that F/L could possibly be used as an alternative to WHR as a surrogate marker of metabolic dysfunction in clinical practice. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants R01-DK073632 and R01-HD29364 from the NIH and an endowment of the Helping Hand of Los Angeles, Inc. (to R.A.). The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER Not applicable.",
keywords = "PCOS, androgens, fat body mass, insulin resistance, lean body mass",
author = "Uche Ezeh and Marita Pall and Ruchi Mathur and Ricardo Azziz",
year = "2014",
month = "1",
day = "1",
doi = "10.1093/humrep/deu096",
language = "English (US)",
volume = "29",
pages = "1508--1517",
journal = "Human Reproduction",
issn = "0268-1161",
publisher = "Oxford University Press",
number = "7",

}

TY - JOUR

T1 - Association of fat to lean mass ratio with metabolic dysfunction in women with polycystic ovary syndrome

AU - Ezeh, Uche

AU - Pall, Marita

AU - Mathur, Ruchi

AU - Azziz, Ricardo

PY - 2014/1/1

Y1 - 2014/1/1

N2 - STUDY QUESTION Are differences in metabolic dysfunction between polycystic ovary syndrome (PCOS) and control women related to differences in their fat to lean mass (F/L) ratio? SUMMARY ANSWER Compared with controls of similar body mass index (BMI), women with PCOS demonstrate adverse body composition characterized by increased whole body fat relative to lean mass (i.e. a higher F/L ratio), which is associated with differences in metabolic dysfunction between the two groups. WHAT IS KNOWN ALREADY Previous studies examining body composition and insulin resistance (IR) in PCOS have yielded conflicting results. Excess total fat mass (i.e. fat mass index [fat BMI]) correlates with IR, whereas increased total lean mass (i.e. lean BMI) has been associated with higher insulin sensitivity. However, the role of the F/L ratio, which integrates the antagonistic effects of both fat and lean mass depots, on IR in PCOS, has not been investigated. STUDY DESIGN, SIZE, DURATION We conducted a prospective cross-sectional study of 120 women between the ages of 22-44 years to study the relation of the F/L ratio with measures of insulin action and secretion in both steady and dynamic states. PARTICIPANTS/MATERIALS, SETTING, METHODS Sixty PCOS (by NIH, 1990 criteria) and 60 control (age, race and BMI-matched) women were prospectively studied for body composition (by bioelectrical impedance analysis [BIA]) and basal IR and insulin secretion by the homeostasis model assessment (HOMA-IR and HOMA-%β-cell function, respectively) in a tertiary care academic referral center. A subset of 12 PCOS and 12 matched control women also underwent a modified frequently sampled intravenous glucose tolerance test (FSIVGTT) to determine glucose uptake and insulin secretion in dynamic state. MAIN RESULTS AND THE ROLE OF CHANCE Our results indicate that women with PCOS demonstrated greater degrees of hyperandrogenism, and higher waist-to-hip ratio (WHR), %body fat, fat BMI, F/L, fasting insulin levels, and HOMA-IR and HOMA-%β-cell values, than controls. In models adjusted for WHR and free testosterone and diagnostic groups, fasting insulin levels, HOMA-IR, and HOMA-%beta cell function were positively related to the F/L ratio. A positive relationship was also found in both study groups between F/L and the FSIVGTT measures insulin sensitivity (Si) and acute insulin response to glucose (AIRg). The F/L tended to negatively correlate with glucose effectiveness or non-insulin-mediated glucose transport (Sg) only in PCOS women. LIMITATIONS, REASONS FOR CAUTION Regional tissue sub-compartments, which have been shown to have potential independent associations with metabolic variables, cannot be determined by bioelectrical impedance analysis (BIA). WIDER IMPLICATIONS OF THE FINDINGS The current results suggest that BIA could be used to assess F/L in place of dual energy X-ray absorptiometry (DXA) in research protocols, and that F/L could possibly be used as an alternative to WHR as a surrogate marker of metabolic dysfunction in clinical practice. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants R01-DK073632 and R01-HD29364 from the NIH and an endowment of the Helping Hand of Los Angeles, Inc. (to R.A.). The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER Not applicable.

AB - STUDY QUESTION Are differences in metabolic dysfunction between polycystic ovary syndrome (PCOS) and control women related to differences in their fat to lean mass (F/L) ratio? SUMMARY ANSWER Compared with controls of similar body mass index (BMI), women with PCOS demonstrate adverse body composition characterized by increased whole body fat relative to lean mass (i.e. a higher F/L ratio), which is associated with differences in metabolic dysfunction between the two groups. WHAT IS KNOWN ALREADY Previous studies examining body composition and insulin resistance (IR) in PCOS have yielded conflicting results. Excess total fat mass (i.e. fat mass index [fat BMI]) correlates with IR, whereas increased total lean mass (i.e. lean BMI) has been associated with higher insulin sensitivity. However, the role of the F/L ratio, which integrates the antagonistic effects of both fat and lean mass depots, on IR in PCOS, has not been investigated. STUDY DESIGN, SIZE, DURATION We conducted a prospective cross-sectional study of 120 women between the ages of 22-44 years to study the relation of the F/L ratio with measures of insulin action and secretion in both steady and dynamic states. PARTICIPANTS/MATERIALS, SETTING, METHODS Sixty PCOS (by NIH, 1990 criteria) and 60 control (age, race and BMI-matched) women were prospectively studied for body composition (by bioelectrical impedance analysis [BIA]) and basal IR and insulin secretion by the homeostasis model assessment (HOMA-IR and HOMA-%β-cell function, respectively) in a tertiary care academic referral center. A subset of 12 PCOS and 12 matched control women also underwent a modified frequently sampled intravenous glucose tolerance test (FSIVGTT) to determine glucose uptake and insulin secretion in dynamic state. MAIN RESULTS AND THE ROLE OF CHANCE Our results indicate that women with PCOS demonstrated greater degrees of hyperandrogenism, and higher waist-to-hip ratio (WHR), %body fat, fat BMI, F/L, fasting insulin levels, and HOMA-IR and HOMA-%β-cell values, than controls. In models adjusted for WHR and free testosterone and diagnostic groups, fasting insulin levels, HOMA-IR, and HOMA-%beta cell function were positively related to the F/L ratio. A positive relationship was also found in both study groups between F/L and the FSIVGTT measures insulin sensitivity (Si) and acute insulin response to glucose (AIRg). The F/L tended to negatively correlate with glucose effectiveness or non-insulin-mediated glucose transport (Sg) only in PCOS women. LIMITATIONS, REASONS FOR CAUTION Regional tissue sub-compartments, which have been shown to have potential independent associations with metabolic variables, cannot be determined by bioelectrical impedance analysis (BIA). WIDER IMPLICATIONS OF THE FINDINGS The current results suggest that BIA could be used to assess F/L in place of dual energy X-ray absorptiometry (DXA) in research protocols, and that F/L could possibly be used as an alternative to WHR as a surrogate marker of metabolic dysfunction in clinical practice. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants R01-DK073632 and R01-HD29364 from the NIH and an endowment of the Helping Hand of Los Angeles, Inc. (to R.A.). The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER Not applicable.

KW - PCOS

KW - androgens

KW - fat body mass

KW - insulin resistance

KW - lean body mass

UR - http://www.scopus.com/inward/record.url?scp=84902651572&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84902651572&partnerID=8YFLogxK

U2 - 10.1093/humrep/deu096

DO - 10.1093/humrep/deu096

M3 - Article

VL - 29

SP - 1508

EP - 1517

JO - Human Reproduction

JF - Human Reproduction

SN - 0268-1161

IS - 7

ER -