Depth order perception in first- and second-order motion stimuli

Gene R. Stoner, Thomas D. Albright, Jay Hegde

Research output: Contribution to journalArticle

Abstract

Dynamic cues for depth ordering of surfaces include (1) progressive uncovering and/or covering of the background texture by the foreground surface ('accretion-deletion cue') and (2) the fact that texture elements of a foreground surface should move at the same velocity as the boundary between foreground and background ('boundary flow cue'). We studied depth order perception using three first-order and three second-order motion stimuli. One first-order stimulus offered both depth cues and the other two first-order stimuli offered only the boundary flow cue. Two second-order stimuli (defined by either contrast modulation or 'flicker') offered only the accretion-deletion cue. The other second-order stimulus offered neither depth cue and was defined by both contrast modulation and flicker. Naïve subjects (n=10) viewed stimuli and indicated perceived depth order by a key press. For stimuli with the accretion-deletion cue, all subjects reported the depth order that was consistent with that cue (p < 0.01), regardless of the presence of the boundary flow cue and whether the stimulus was first- or second-order. Accretion-deletion thus appears sufficient for depth order perception. The efficacy of the boundary flow cue varied considerably across subjects, with some subjects showing no effect. No consistent depth order bias was evident when neither depth cue was available. In addition to highlighting the importance of the accretion-deletion cue relative to the boundary flow cue, our results show that second-order motion defined by either contrast modulation or flicker provides depth order information. Previous neurophysiological studies have found that some visual neurons respond to these types of second-order stimuli. This study suggests that such responses may encode information about depth order as well as motion.

Original languageEnglish (US)
JournalJournal of Vision
Volume3
Issue number9
DOIs
StatePublished - Dec 1 2003
Externally publishedYes

Fingerprint

Depth Perception
Cues

ASJC Scopus subject areas

  • Ophthalmology

Cite this

Depth order perception in first- and second-order motion stimuli. / Stoner, Gene R.; Albright, Thomas D.; Hegde, Jay.

In: Journal of Vision, Vol. 3, No. 9, 01.12.2003.

Research output: Contribution to journalArticle

Stoner, Gene R. ; Albright, Thomas D. ; Hegde, Jay. / Depth order perception in first- and second-order motion stimuli. In: Journal of Vision. 2003 ; Vol. 3, No. 9.
@article{5b21f52932b644a6adbe6a6f304dcc63,
title = "Depth order perception in first- and second-order motion stimuli",
abstract = "Dynamic cues for depth ordering of surfaces include (1) progressive uncovering and/or covering of the background texture by the foreground surface ('accretion-deletion cue') and (2) the fact that texture elements of a foreground surface should move at the same velocity as the boundary between foreground and background ('boundary flow cue'). We studied depth order perception using three first-order and three second-order motion stimuli. One first-order stimulus offered both depth cues and the other two first-order stimuli offered only the boundary flow cue. Two second-order stimuli (defined by either contrast modulation or 'flicker') offered only the accretion-deletion cue. The other second-order stimulus offered neither depth cue and was defined by both contrast modulation and flicker. Na{\"i}ve subjects (n=10) viewed stimuli and indicated perceived depth order by a key press. For stimuli with the accretion-deletion cue, all subjects reported the depth order that was consistent with that cue (p < 0.01), regardless of the presence of the boundary flow cue and whether the stimulus was first- or second-order. Accretion-deletion thus appears sufficient for depth order perception. The efficacy of the boundary flow cue varied considerably across subjects, with some subjects showing no effect. No consistent depth order bias was evident when neither depth cue was available. In addition to highlighting the importance of the accretion-deletion cue relative to the boundary flow cue, our results show that second-order motion defined by either contrast modulation or flicker provides depth order information. Previous neurophysiological studies have found that some visual neurons respond to these types of second-order stimuli. This study suggests that such responses may encode information about depth order as well as motion.",
author = "Stoner, {Gene R.} and Albright, {Thomas D.} and Jay Hegde",
year = "2003",
month = "12",
day = "1",
doi = "10.1167/3.9.799",
language = "English (US)",
volume = "3",
journal = "Journal of Vision",
issn = "1534-7362",
publisher = "Association for Research in Vision and Ophthalmology Inc.",
number = "9",

}

TY - JOUR

T1 - Depth order perception in first- and second-order motion stimuli

AU - Stoner, Gene R.

AU - Albright, Thomas D.

AU - Hegde, Jay

PY - 2003/12/1

Y1 - 2003/12/1

N2 - Dynamic cues for depth ordering of surfaces include (1) progressive uncovering and/or covering of the background texture by the foreground surface ('accretion-deletion cue') and (2) the fact that texture elements of a foreground surface should move at the same velocity as the boundary between foreground and background ('boundary flow cue'). We studied depth order perception using three first-order and three second-order motion stimuli. One first-order stimulus offered both depth cues and the other two first-order stimuli offered only the boundary flow cue. Two second-order stimuli (defined by either contrast modulation or 'flicker') offered only the accretion-deletion cue. The other second-order stimulus offered neither depth cue and was defined by both contrast modulation and flicker. Naïve subjects (n=10) viewed stimuli and indicated perceived depth order by a key press. For stimuli with the accretion-deletion cue, all subjects reported the depth order that was consistent with that cue (p < 0.01), regardless of the presence of the boundary flow cue and whether the stimulus was first- or second-order. Accretion-deletion thus appears sufficient for depth order perception. The efficacy of the boundary flow cue varied considerably across subjects, with some subjects showing no effect. No consistent depth order bias was evident when neither depth cue was available. In addition to highlighting the importance of the accretion-deletion cue relative to the boundary flow cue, our results show that second-order motion defined by either contrast modulation or flicker provides depth order information. Previous neurophysiological studies have found that some visual neurons respond to these types of second-order stimuli. This study suggests that such responses may encode information about depth order as well as motion.

AB - Dynamic cues for depth ordering of surfaces include (1) progressive uncovering and/or covering of the background texture by the foreground surface ('accretion-deletion cue') and (2) the fact that texture elements of a foreground surface should move at the same velocity as the boundary between foreground and background ('boundary flow cue'). We studied depth order perception using three first-order and three second-order motion stimuli. One first-order stimulus offered both depth cues and the other two first-order stimuli offered only the boundary flow cue. Two second-order stimuli (defined by either contrast modulation or 'flicker') offered only the accretion-deletion cue. The other second-order stimulus offered neither depth cue and was defined by both contrast modulation and flicker. Naïve subjects (n=10) viewed stimuli and indicated perceived depth order by a key press. For stimuli with the accretion-deletion cue, all subjects reported the depth order that was consistent with that cue (p < 0.01), regardless of the presence of the boundary flow cue and whether the stimulus was first- or second-order. Accretion-deletion thus appears sufficient for depth order perception. The efficacy of the boundary flow cue varied considerably across subjects, with some subjects showing no effect. No consistent depth order bias was evident when neither depth cue was available. In addition to highlighting the importance of the accretion-deletion cue relative to the boundary flow cue, our results show that second-order motion defined by either contrast modulation or flicker provides depth order information. Previous neurophysiological studies have found that some visual neurons respond to these types of second-order stimuli. This study suggests that such responses may encode information about depth order as well as motion.

UR - http://www.scopus.com/inward/record.url?scp=4243180422&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=4243180422&partnerID=8YFLogxK

U2 - 10.1167/3.9.799

DO - 10.1167/3.9.799

M3 - Article

VL - 3

JO - Journal of Vision

JF - Journal of Vision

SN - 1534-7362

IS - 9

ER -