Direct routing: Algorithms and complexity

Costas Busch, Malik Magdon-Ismail, Marios Mavronicolas, Paul Spirakis

Research output: Chapter in Book/Report/Conference proceedingChapter

3 Scopus citations

Abstract

Direct routing is the special case of bufferless routing where N packets, once injected into the network, must be routed along specific paths to their destinations without conflicts. We give a general treatment of three facets of direct routing: (i) Algorithms. We present a polynomial time greedy algorithm for arbitrary direct routing problems which is worst-case optimal, i.e., there exist instances for which no direct routing algorithm is better than the greedy. We apply variants of this algorithm to commonly used network topologies particular, we obtain near-optimal routing time for the tree and d-dimensional mesh, given arbitrary sources and destinations; for the butterfly and the hypercube, the same result holds for random destinations. (ii) Complexity. By a reduction from Vertex Coloring, we show that Direct Routing is inapproximable, unless P=NP. (iii) Lower Bounds for Buffering. We show that certain direct routing problems cannot be solved efficiently; to solve these problems, any routing algorithm needs buffers. We give non-trivial lower bounds on such buffering requirements for general routing algorithms.

Original languageEnglish (US)
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditorsSusanne Albers, Tomasz Radzik
PublisherSpringer Verlag
Pages134-145
Number of pages12
ISBN (Print)3540230254, 9783540230250
DOIs
StatePublished - 2004
Externally publishedYes

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume3221
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Direct routing: Algorithms and complexity'. Together they form a unique fingerprint.

Cite this