Efficient adenoviral gene transfer to early venous bypass grafts: Comparison with native vessels

Keith M. Channon, Gregory J. Fulton, John L. Gray, Brian H. Annex, Geetha A. Shetty, Michael A. Blazing, Kevin G. Peters, Per Otto Hagen, Samuel E. George

Research output: Contribution to journalArticle

36 Scopus citations

Abstract

Objectives: Gene therapy may provide new approaches to reduce vein graft failure following coronary or peripheral bypass surgery. The aim of this study was to investigate the relative efficacy of intraoperative adenoviral gene transfer to vein grafts, comparing transgene expression in vein grafts with that in matched native vessels in the same animal. In addition, we assessed the impact of bypass grafting on the cellular targets of gene transfer. Methods: New Zealand White rabbits underwent interposition bypass grafting of the carotid artery, using the ipsilateral external jugular vein, which was infected with an adenovirus expressing β-galactosidase immediately prior to bypass grafting (n = 16). The contralateral native jugular vein (n = 16) and carotid artery (n = 8) were infected concurrently with the same adenoviral preparation. After 3, 7 or 14 days, β-galactosidase protein expression was quantified by ELISA, and specific cell types expressing β- galactosidase were identified by X-Gal staining and by immunohistochemistry. Results: After 3 days, endothelial cells were efficiently transduced in all vessels; medial smooth muscle cells were transduced infrequently. In contrast to jugular veins after gene transfer, endothelium in vein grafts showed expression of VCAM-1 and ICAM-1, and intense inflammation with CD18+ leukocytes. Transgene expression in vein grafts at day 3 was maintained at levels approximately 50% of that in ungrafted jugular veins, but continued to decrease through day 7. Conclusions: Although vascular injury in early venous bypass grafts reduces gene transfer efficacy, significant transgene expression is maintained for at least 7 days. These findings have important implications for intraoperative gene transfer strategies in vein grafts.

Original languageEnglish (US)
Pages (from-to)505-513
Number of pages9
JournalCardiovascular Research
Volume35
Issue number3
DOIs
StatePublished - Sep 1 1997
Externally publishedYes

Keywords

  • Adenovirus
  • Bypass grafts
  • Endothelium
  • Gene transfer
  • Rabbit, endothelial cells
  • Smooth muscle

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Efficient adenoviral gene transfer to early venous bypass grafts: Comparison with native vessels'. Together they form a unique fingerprint.

  • Cite this

    Channon, K. M., Fulton, G. J., Gray, J. L., Annex, B. H., Shetty, G. A., Blazing, M. A., Peters, K. G., Hagen, P. O., & George, S. E. (1997). Efficient adenoviral gene transfer to early venous bypass grafts: Comparison with native vessels. Cardiovascular Research, 35(3), 505-513. https://doi.org/10.1016/S0008-6363(97)00098-9