Hierarchical and non-hierarchical mineralisation of collagen

Yan Liu, Young Kyung Kim, Lin Dai, Nan Li, Sara O. Khan, David Henry Pashley, Franklin Chi Meng Tay

Research output: Contribution to journalArticle

110 Citations (Scopus)

Abstract

Biomineralisation of collagen involves functional motifs incorporated in extracellular matrix protein molecules to accomplish the objectives of stabilising amorphous calcium phosphate into nanoprecursors and directing the nucleation and growth of apatite within collagen fibrils. Here we report the use of small inorganic polyphosphate molecules to template hierarchical intrafibrillar apatite assembly in reconstituted collagen in the presence of polyacrylic acid to sequester calcium and phosphate into transient amorphous nanophases. The use of polyphosphate without a sequestration analogue resulted only in randomly-oriented extrafibrillar precipitations along the fibrillar surface. Conversely, the use of polyacrylic acid without a templating analogue resulted only in non-hierarchical intrafibrillar mineralisation with continuous apatite strands instead of discrete crystallites. The ability of using simple non-protein molecules to recapitulate different levels of structural hierarchy in mineralised collagen signifies the ultimate simplicity in Nature's biomineralisation design principles and challenges the need for using more complex recombinant matrix proteins in bioengineering applications.

Original languageEnglish (US)
Pages (from-to)1291-1300
Number of pages10
JournalBiomaterials
Volume32
Issue number5
DOIs
StatePublished - Feb 1 2011

Fingerprint

carbopol 940
Collagen
Apatites
Apatite
Biomineralization
Polyphosphates
Molecules
Proteins
Bioengineering
Acids
Extracellular Matrix Proteins
Calcium phosphate
Crystallites
Recombinant Proteins
Calcium
Phosphates
Nucleation
Growth

Keywords

  • Biomineralisation
  • Crossbanding
  • Extrafibrillar mineralisation
  • Hierarchical intrafibrillar mineralisation
  • Non-hierarchical intrafibrillar mineralisation
  • Non-protein molecules

ASJC Scopus subject areas

  • Bioengineering
  • Ceramics and Composites
  • Biophysics
  • Biomaterials
  • Mechanics of Materials

Cite this

Liu, Y., Kim, Y. K., Dai, L., Li, N., Khan, S. O., Pashley, D. H., & Tay, F. C. M. (2011). Hierarchical and non-hierarchical mineralisation of collagen. Biomaterials, 32(5), 1291-1300. https://doi.org/10.1016/j.biomaterials.2010.10.018

Hierarchical and non-hierarchical mineralisation of collagen. / Liu, Yan; Kim, Young Kyung; Dai, Lin; Li, Nan; Khan, Sara O.; Pashley, David Henry; Tay, Franklin Chi Meng.

In: Biomaterials, Vol. 32, No. 5, 01.02.2011, p. 1291-1300.

Research output: Contribution to journalArticle

Liu, Y, Kim, YK, Dai, L, Li, N, Khan, SO, Pashley, DH & Tay, FCM 2011, 'Hierarchical and non-hierarchical mineralisation of collagen', Biomaterials, vol. 32, no. 5, pp. 1291-1300. https://doi.org/10.1016/j.biomaterials.2010.10.018
Liu Y, Kim YK, Dai L, Li N, Khan SO, Pashley DH et al. Hierarchical and non-hierarchical mineralisation of collagen. Biomaterials. 2011 Feb 1;32(5):1291-1300. https://doi.org/10.1016/j.biomaterials.2010.10.018
Liu, Yan ; Kim, Young Kyung ; Dai, Lin ; Li, Nan ; Khan, Sara O. ; Pashley, David Henry ; Tay, Franklin Chi Meng. / Hierarchical and non-hierarchical mineralisation of collagen. In: Biomaterials. 2011 ; Vol. 32, No. 5. pp. 1291-1300.
@article{06d8a14b8c194dcf99d47de8eb540042,
title = "Hierarchical and non-hierarchical mineralisation of collagen",
abstract = "Biomineralisation of collagen involves functional motifs incorporated in extracellular matrix protein molecules to accomplish the objectives of stabilising amorphous calcium phosphate into nanoprecursors and directing the nucleation and growth of apatite within collagen fibrils. Here we report the use of small inorganic polyphosphate molecules to template hierarchical intrafibrillar apatite assembly in reconstituted collagen in the presence of polyacrylic acid to sequester calcium and phosphate into transient amorphous nanophases. The use of polyphosphate without a sequestration analogue resulted only in randomly-oriented extrafibrillar precipitations along the fibrillar surface. Conversely, the use of polyacrylic acid without a templating analogue resulted only in non-hierarchical intrafibrillar mineralisation with continuous apatite strands instead of discrete crystallites. The ability of using simple non-protein molecules to recapitulate different levels of structural hierarchy in mineralised collagen signifies the ultimate simplicity in Nature's biomineralisation design principles and challenges the need for using more complex recombinant matrix proteins in bioengineering applications.",
keywords = "Biomineralisation, Crossbanding, Extrafibrillar mineralisation, Hierarchical intrafibrillar mineralisation, Non-hierarchical intrafibrillar mineralisation, Non-protein molecules",
author = "Yan Liu and Kim, {Young Kyung} and Lin Dai and Nan Li and Khan, {Sara O.} and Pashley, {David Henry} and Tay, {Franklin Chi Meng}",
year = "2011",
month = "2",
day = "1",
doi = "10.1016/j.biomaterials.2010.10.018",
language = "English (US)",
volume = "32",
pages = "1291--1300",
journal = "Biomaterials",
issn = "0142-9612",
publisher = "Elsevier BV",
number = "5",

}

TY - JOUR

T1 - Hierarchical and non-hierarchical mineralisation of collagen

AU - Liu, Yan

AU - Kim, Young Kyung

AU - Dai, Lin

AU - Li, Nan

AU - Khan, Sara O.

AU - Pashley, David Henry

AU - Tay, Franklin Chi Meng

PY - 2011/2/1

Y1 - 2011/2/1

N2 - Biomineralisation of collagen involves functional motifs incorporated in extracellular matrix protein molecules to accomplish the objectives of stabilising amorphous calcium phosphate into nanoprecursors and directing the nucleation and growth of apatite within collagen fibrils. Here we report the use of small inorganic polyphosphate molecules to template hierarchical intrafibrillar apatite assembly in reconstituted collagen in the presence of polyacrylic acid to sequester calcium and phosphate into transient amorphous nanophases. The use of polyphosphate without a sequestration analogue resulted only in randomly-oriented extrafibrillar precipitations along the fibrillar surface. Conversely, the use of polyacrylic acid without a templating analogue resulted only in non-hierarchical intrafibrillar mineralisation with continuous apatite strands instead of discrete crystallites. The ability of using simple non-protein molecules to recapitulate different levels of structural hierarchy in mineralised collagen signifies the ultimate simplicity in Nature's biomineralisation design principles and challenges the need for using more complex recombinant matrix proteins in bioengineering applications.

AB - Biomineralisation of collagen involves functional motifs incorporated in extracellular matrix protein molecules to accomplish the objectives of stabilising amorphous calcium phosphate into nanoprecursors and directing the nucleation and growth of apatite within collagen fibrils. Here we report the use of small inorganic polyphosphate molecules to template hierarchical intrafibrillar apatite assembly in reconstituted collagen in the presence of polyacrylic acid to sequester calcium and phosphate into transient amorphous nanophases. The use of polyphosphate without a sequestration analogue resulted only in randomly-oriented extrafibrillar precipitations along the fibrillar surface. Conversely, the use of polyacrylic acid without a templating analogue resulted only in non-hierarchical intrafibrillar mineralisation with continuous apatite strands instead of discrete crystallites. The ability of using simple non-protein molecules to recapitulate different levels of structural hierarchy in mineralised collagen signifies the ultimate simplicity in Nature's biomineralisation design principles and challenges the need for using more complex recombinant matrix proteins in bioengineering applications.

KW - Biomineralisation

KW - Crossbanding

KW - Extrafibrillar mineralisation

KW - Hierarchical intrafibrillar mineralisation

KW - Non-hierarchical intrafibrillar mineralisation

KW - Non-protein molecules

UR - http://www.scopus.com/inward/record.url?scp=78649730608&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78649730608&partnerID=8YFLogxK

U2 - 10.1016/j.biomaterials.2010.10.018

DO - 10.1016/j.biomaterials.2010.10.018

M3 - Article

VL - 32

SP - 1291

EP - 1300

JO - Biomaterials

JF - Biomaterials

SN - 0142-9612

IS - 5

ER -