Linking of N-Myc to death receptor machinery in neuroblastoma cells

Hongjuan Cui, Tai Li, Han Fei Ding

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

The oncogene MYCN is amplified in aggressive neuroblastomas in which caspase-8, an essential component of death receptor pathways, is frequently inactivated, suggesting a critical role of death receptor-mediated apoptosis in suppression of N-Myc oncogenic activity. Elevated levels of N-Myc sensitize neuroblastoma cells to apoptosis induced by various death ligands. Using tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis as a model, we define the mechanism underlying the sensitization effect. In neuroblastoma cells with increased expression of N-Myc, TRAIL triggers high levels of caspase-8 activation and Bid cleavage, leading to release of cytochrome c and Smac/DIABLO from mitochondria. However, the apoptotic process requires Smac/DIABLO, but not cytochrome c-mediated caspase-8 activation. N-Myc sensitizes neuroblastoma cells to TRAIL by up-regulating TRAIL receptor-2/DR5/KILLER and Bid. Moreover, DR5 mRNA is increased after N-Myc overexpression, and the human DR5 promoter contains two noncanonical E-boxes critical for the transcriptional activation by N-Myc. These findings establish a mechanistic link between N-Myc and death receptor machinery, which may serve as a checkpoint to guard the cell from N-Myc-initiated tumorigenesis.

Original languageEnglish (US)
Pages (from-to)9474-9481
Number of pages8
JournalJournal of Biological Chemistry
Volume280
Issue number10
DOIs
StatePublished - Mar 11 2005
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Linking of N-Myc to death receptor machinery in neuroblastoma cells'. Together they form a unique fingerprint.

Cite this