LPA and S1P increase corneal epithelial and endothelial cell transcellular resistance

Research output: Contribution to journalArticle

39 Citations (Scopus)

Abstract

PURPOSE. To determine whether lysophosphatidic acid (LPA) or sphingosine-1-phosphate (S1P) affects transcellular resistance across cultured rabbit corneal epithelial and endothelial cells. METHODS. Electric cell-substrate impedance sensing (ECIS) was used to measure electrical resistance across cultured rabbit corneal epithelial and endothelial monolayers. After a 1-hour equilibration period, different concentrations of LPA or S1P were added to each well, and the effect observed for 4 hours. For cells significantly affected by LPA or S1P, pertussis toxin (PTX) or dioctyl-glycerol pyrophosphate (DGPP 8:0) was added along with LPA or S1P in separate experiments. Cells were also treated with phorbol 12-myristate 13-acetate (PMA) in the presence of LPA or S1P in different tests. The influence of LPA and S1P on epithelial and endothelial cell F-actin was determined with immunohistochemistry. RESULTS. LPA significantly increased the resistance of both the epithelial and endothelial monolayers, whereas S1P increased the resistance in only the endothelial cells. PTX blocked both the LPA- and S1P-induced increases in resistance, and DGPP (8:0) inhibited LPA-induced transcellular resistance in both the epithelium and endothelium. LPA and S1P prevented PMA-induced resistance decreases across epithelial and endothelial cells. F-actin staining around cell borders was more intense in both LPA- and S1P-treated cells. CONCLUSIONS. LPA increases transcellular resistance across cultured rabbit corneal epithelial and endothelial cell monolayers, and the effect is mediated through the LPA1 receptor and signaled through Gαi/o. S1P-stimulated increases in endothelial resistance are also signaled through Gαi/o. Both LPA and S1P prevented increased transcellular permeabilities induced by PMA, and increased actin stress fiber formation in epithelial and endothelial cells.

Original languageEnglish (US)
Pages (from-to)1927-1933
Number of pages7
JournalInvestigative Ophthalmology and Visual Science
Volume46
Issue number6
DOIs
StatePublished - Jun 1 2005
Externally publishedYes

Fingerprint

Endothelial Cells
Epithelial Cells
Actins
Acetates
Pertussis Toxin
Rabbits
Electric Impedance
lysophosphatidic acid
sphingosine 1-phosphate
Lysophosphatidic Acid Receptors
Stress Fibers
Glycerol
Endothelium
Permeability
Epithelium
Immunohistochemistry
Staining and Labeling

ASJC Scopus subject areas

  • Ophthalmology

Cite this

LPA and S1P increase corneal epithelial and endothelial cell transcellular resistance. / Yin, Fei; Watsky, Mitchell Aaron.

In: Investigative Ophthalmology and Visual Science, Vol. 46, No. 6, 01.06.2005, p. 1927-1933.

Research output: Contribution to journalArticle

@article{52883d8ff0054a45a532b6ec8ca67b2b,
title = "LPA and S1P increase corneal epithelial and endothelial cell transcellular resistance",
abstract = "PURPOSE. To determine whether lysophosphatidic acid (LPA) or sphingosine-1-phosphate (S1P) affects transcellular resistance across cultured rabbit corneal epithelial and endothelial cells. METHODS. Electric cell-substrate impedance sensing (ECIS) was used to measure electrical resistance across cultured rabbit corneal epithelial and endothelial monolayers. After a 1-hour equilibration period, different concentrations of LPA or S1P were added to each well, and the effect observed for 4 hours. For cells significantly affected by LPA or S1P, pertussis toxin (PTX) or dioctyl-glycerol pyrophosphate (DGPP 8:0) was added along with LPA or S1P in separate experiments. Cells were also treated with phorbol 12-myristate 13-acetate (PMA) in the presence of LPA or S1P in different tests. The influence of LPA and S1P on epithelial and endothelial cell F-actin was determined with immunohistochemistry. RESULTS. LPA significantly increased the resistance of both the epithelial and endothelial monolayers, whereas S1P increased the resistance in only the endothelial cells. PTX blocked both the LPA- and S1P-induced increases in resistance, and DGPP (8:0) inhibited LPA-induced transcellular resistance in both the epithelium and endothelium. LPA and S1P prevented PMA-induced resistance decreases across epithelial and endothelial cells. F-actin staining around cell borders was more intense in both LPA- and S1P-treated cells. CONCLUSIONS. LPA increases transcellular resistance across cultured rabbit corneal epithelial and endothelial cell monolayers, and the effect is mediated through the LPA1 receptor and signaled through Gαi/o. S1P-stimulated increases in endothelial resistance are also signaled through Gαi/o. Both LPA and S1P prevented increased transcellular permeabilities induced by PMA, and increased actin stress fiber formation in epithelial and endothelial cells.",
author = "Fei Yin and Watsky, {Mitchell Aaron}",
year = "2005",
month = "6",
day = "1",
doi = "10.1167/iovs.04-1256",
language = "English (US)",
volume = "46",
pages = "1927--1933",
journal = "Investigative Ophthalmology and Visual Science",
issn = "0146-0404",
publisher = "Association for Research in Vision and Ophthalmology Inc.",
number = "6",

}

TY - JOUR

T1 - LPA and S1P increase corneal epithelial and endothelial cell transcellular resistance

AU - Yin, Fei

AU - Watsky, Mitchell Aaron

PY - 2005/6/1

Y1 - 2005/6/1

N2 - PURPOSE. To determine whether lysophosphatidic acid (LPA) or sphingosine-1-phosphate (S1P) affects transcellular resistance across cultured rabbit corneal epithelial and endothelial cells. METHODS. Electric cell-substrate impedance sensing (ECIS) was used to measure electrical resistance across cultured rabbit corneal epithelial and endothelial monolayers. After a 1-hour equilibration period, different concentrations of LPA or S1P were added to each well, and the effect observed for 4 hours. For cells significantly affected by LPA or S1P, pertussis toxin (PTX) or dioctyl-glycerol pyrophosphate (DGPP 8:0) was added along with LPA or S1P in separate experiments. Cells were also treated with phorbol 12-myristate 13-acetate (PMA) in the presence of LPA or S1P in different tests. The influence of LPA and S1P on epithelial and endothelial cell F-actin was determined with immunohistochemistry. RESULTS. LPA significantly increased the resistance of both the epithelial and endothelial monolayers, whereas S1P increased the resistance in only the endothelial cells. PTX blocked both the LPA- and S1P-induced increases in resistance, and DGPP (8:0) inhibited LPA-induced transcellular resistance in both the epithelium and endothelium. LPA and S1P prevented PMA-induced resistance decreases across epithelial and endothelial cells. F-actin staining around cell borders was more intense in both LPA- and S1P-treated cells. CONCLUSIONS. LPA increases transcellular resistance across cultured rabbit corneal epithelial and endothelial cell monolayers, and the effect is mediated through the LPA1 receptor and signaled through Gαi/o. S1P-stimulated increases in endothelial resistance are also signaled through Gαi/o. Both LPA and S1P prevented increased transcellular permeabilities induced by PMA, and increased actin stress fiber formation in epithelial and endothelial cells.

AB - PURPOSE. To determine whether lysophosphatidic acid (LPA) or sphingosine-1-phosphate (S1P) affects transcellular resistance across cultured rabbit corneal epithelial and endothelial cells. METHODS. Electric cell-substrate impedance sensing (ECIS) was used to measure electrical resistance across cultured rabbit corneal epithelial and endothelial monolayers. After a 1-hour equilibration period, different concentrations of LPA or S1P were added to each well, and the effect observed for 4 hours. For cells significantly affected by LPA or S1P, pertussis toxin (PTX) or dioctyl-glycerol pyrophosphate (DGPP 8:0) was added along with LPA or S1P in separate experiments. Cells were also treated with phorbol 12-myristate 13-acetate (PMA) in the presence of LPA or S1P in different tests. The influence of LPA and S1P on epithelial and endothelial cell F-actin was determined with immunohistochemistry. RESULTS. LPA significantly increased the resistance of both the epithelial and endothelial monolayers, whereas S1P increased the resistance in only the endothelial cells. PTX blocked both the LPA- and S1P-induced increases in resistance, and DGPP (8:0) inhibited LPA-induced transcellular resistance in both the epithelium and endothelium. LPA and S1P prevented PMA-induced resistance decreases across epithelial and endothelial cells. F-actin staining around cell borders was more intense in both LPA- and S1P-treated cells. CONCLUSIONS. LPA increases transcellular resistance across cultured rabbit corneal epithelial and endothelial cell monolayers, and the effect is mediated through the LPA1 receptor and signaled through Gαi/o. S1P-stimulated increases in endothelial resistance are also signaled through Gαi/o. Both LPA and S1P prevented increased transcellular permeabilities induced by PMA, and increased actin stress fiber formation in epithelial and endothelial cells.

UR - http://www.scopus.com/inward/record.url?scp=22144480136&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=22144480136&partnerID=8YFLogxK

U2 - 10.1167/iovs.04-1256

DO - 10.1167/iovs.04-1256

M3 - Article

VL - 46

SP - 1927

EP - 1933

JO - Investigative Ophthalmology and Visual Science

JF - Investigative Ophthalmology and Visual Science

SN - 0146-0404

IS - 6

ER -