Net expansion of dried demineralized dentin matrix produced by monomer/alcohol saturation and solvent evaporation

Kelli A. Agee, Thomas D. Becker, Anthony P. Joyce, Frederick A. Rueggeberg, James L. Borke, Jennifer L. Waller, Franklin R. Tay, David H. Pashley

Research output: Contribution to journalArticlepeer-review

29 Scopus citations


The purpose of this work was to determine if nonaqueous methacrylate monomer/alcohol mixtures could expand dried collapsed demineralized dentin matrix. Thin disks (ca. 200 μm) of human dentin were demineralized and placed in wells beneath contact probes of linear variable differential transformers. The probes were placed on water-saturated expanded matrices to record the shrinkage associated with drying. Monomer mixtures containing hydroxyethyl methacrylate, 2,2-bis[4-(2-hydroxy-3 methacryloyloxy)propoxyphenyl] propane, or triethyleneglycol dimethacrylate were mixed with methanol or ethanol at alcohol/monomer mass fraction % of 90/10, 70/30, 50/50, or 30/70. They were randomly applied to the dried matrices to determine the rate and magnitude of expansion; then shrinkage was recorded during evaporation of the alcohols. The results indicated that matrix expansion was positively correlated with the Hoy's solubility parameters for hydrogen bonding forces (δh) of the monomer/solvent mixtures (p < 0.001). Expansions were more rapid with methanol-containing than with ethanol-containing monomer mixtures. For the test solutions, triethyleneglycol dimethacrylate-containing mixtures produced the slowest rate of matrix expansion and hydroxyethyl methacrylate-containing mixtures the most rapid expansion. When the solvents were evaporated, the matrix shrank in proportion to the solvent content and the δh of the monomer-solvent mixtures. The results indicate that expansion of dried, collapsed dentin matrices requires that the δh of the mixtures be larger than 17 (J/cm3)1/2. The greater the δh of the monomer solutions, the greater the rate and extent of expansion.

Original languageEnglish (US)
Pages (from-to)349-358
Number of pages10
JournalJournal of Biomedical Materials Research - Part A
Issue number2
StatePublished - Nov 2006


  • Collagen
  • Dentin matrix
  • Dimensional changes
  • Solubility parameters

ASJC Scopus subject areas

  • Ceramics and Composites
  • Biomaterials
  • Biomedical Engineering
  • Metals and Alloys


Dive into the research topics of 'Net expansion of dried demineralized dentin matrix produced by monomer/alcohol saturation and solvent evaporation'. Together they form a unique fingerprint.

Cite this