NO-independent vasodilation to acetylcholine in the rat isolated kidney utilizes a charybdotoxin-sensitive, intermediate-conductance Ca++-activated K+ channel

P. Mieyal, D. Fulton, J. C. McGiff, J. Quilley

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

The role of K+ channels in the nitric oxide-independent renal vasodilator effect of acetylcholine (Ach) was examined to address the hypothesis that the mechanism underlying this response was different from that of bradykinin, because an earlier study indicated the possibility of different mediators. We used the rat isolated, perfused kidney that was constricted with phenylephrine and treated with nitroarginine and indomethacin to inhibit nitric oxide synthase and cyclooxygenase, respectively. The nonspecific K+ channel inhibitors, procaine and tetraethylammonium (TEA), reduced vasodilator responses to Ach and cromakalim, but not those to nitroprusside. Gilbenclamide, an inhibitor of ATP-sensitive K+ channels, reduced vasodilator responses to cromakalim but did not affect those to Ach or nitroprusside. Charybdotoxin, an inhibitor of Ca++-activated K+ channels, reduced vasodilator responses to Ach without affecting those to cromakalim or nitroprusside. Iberiotoxin and apamin, inhibitors of large- and small-conductance Ca++-activated K+ channels, respectively, did not reduce vasodilation induced by Ach, cromakalim or nitroprusside. The inhibitor of cytochrome P450, clotrimazole, reduced the renal vasodilator effects of Ach and bradykinin but not those of nitroprusside or SCA 40, an agonist for Ca++-activated K+ channels. These results suggest that in the rat kidney, Ach, like bradykinin, utilizes a charybdotoxin-sensitive Ca++-activated K+ channel of intermediate conductance to elicit vasodilation and that this effect may be dependent on cytochrome P450 activity.

Original languageEnglish (US)
Pages (from-to)659-664
Number of pages6
JournalJournal of Pharmacology and Experimental Therapeutics
Volume285
Issue number2
StatePublished - Jan 1 1998

Fingerprint

Charybdotoxin
Vasodilation
Acetylcholine
Cromakalim
Nitroprusside
Vasodilator Agents
Kidney
Bradykinin
Cytochrome P-450 Enzyme System
Clotrimazole
Apamin
Procaine
Tetraethylammonium
Nitroarginine
Phenylephrine
Prostaglandin-Endoperoxide Synthases
Nitric Oxide Synthase
Indomethacin
Nitric Oxide
Adenosine Triphosphate

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology

Cite this

@article{3a35c72ccc2547929c5c493d58978a62,
title = "NO-independent vasodilation to acetylcholine in the rat isolated kidney utilizes a charybdotoxin-sensitive, intermediate-conductance Ca++-activated K+ channel",
abstract = "The role of K+ channels in the nitric oxide-independent renal vasodilator effect of acetylcholine (Ach) was examined to address the hypothesis that the mechanism underlying this response was different from that of bradykinin, because an earlier study indicated the possibility of different mediators. We used the rat isolated, perfused kidney that was constricted with phenylephrine and treated with nitroarginine and indomethacin to inhibit nitric oxide synthase and cyclooxygenase, respectively. The nonspecific K+ channel inhibitors, procaine and tetraethylammonium (TEA), reduced vasodilator responses to Ach and cromakalim, but not those to nitroprusside. Gilbenclamide, an inhibitor of ATP-sensitive K+ channels, reduced vasodilator responses to cromakalim but did not affect those to Ach or nitroprusside. Charybdotoxin, an inhibitor of Ca++-activated K+ channels, reduced vasodilator responses to Ach without affecting those to cromakalim or nitroprusside. Iberiotoxin and apamin, inhibitors of large- and small-conductance Ca++-activated K+ channels, respectively, did not reduce vasodilation induced by Ach, cromakalim or nitroprusside. The inhibitor of cytochrome P450, clotrimazole, reduced the renal vasodilator effects of Ach and bradykinin but not those of nitroprusside or SCA 40, an agonist for Ca++-activated K+ channels. These results suggest that in the rat kidney, Ach, like bradykinin, utilizes a charybdotoxin-sensitive Ca++-activated K+ channel of intermediate conductance to elicit vasodilation and that this effect may be dependent on cytochrome P450 activity.",
author = "P. Mieyal and D. Fulton and McGiff, {J. C.} and J. Quilley",
year = "1998",
month = "1",
day = "1",
language = "English (US)",
volume = "285",
pages = "659--664",
journal = "The Journal of pharmacology and experimental therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "2",

}

TY - JOUR

T1 - NO-independent vasodilation to acetylcholine in the rat isolated kidney utilizes a charybdotoxin-sensitive, intermediate-conductance Ca++-activated K+ channel

AU - Mieyal, P.

AU - Fulton, D.

AU - McGiff, J. C.

AU - Quilley, J.

PY - 1998/1/1

Y1 - 1998/1/1

N2 - The role of K+ channels in the nitric oxide-independent renal vasodilator effect of acetylcholine (Ach) was examined to address the hypothesis that the mechanism underlying this response was different from that of bradykinin, because an earlier study indicated the possibility of different mediators. We used the rat isolated, perfused kidney that was constricted with phenylephrine and treated with nitroarginine and indomethacin to inhibit nitric oxide synthase and cyclooxygenase, respectively. The nonspecific K+ channel inhibitors, procaine and tetraethylammonium (TEA), reduced vasodilator responses to Ach and cromakalim, but not those to nitroprusside. Gilbenclamide, an inhibitor of ATP-sensitive K+ channels, reduced vasodilator responses to cromakalim but did not affect those to Ach or nitroprusside. Charybdotoxin, an inhibitor of Ca++-activated K+ channels, reduced vasodilator responses to Ach without affecting those to cromakalim or nitroprusside. Iberiotoxin and apamin, inhibitors of large- and small-conductance Ca++-activated K+ channels, respectively, did not reduce vasodilation induced by Ach, cromakalim or nitroprusside. The inhibitor of cytochrome P450, clotrimazole, reduced the renal vasodilator effects of Ach and bradykinin but not those of nitroprusside or SCA 40, an agonist for Ca++-activated K+ channels. These results suggest that in the rat kidney, Ach, like bradykinin, utilizes a charybdotoxin-sensitive Ca++-activated K+ channel of intermediate conductance to elicit vasodilation and that this effect may be dependent on cytochrome P450 activity.

AB - The role of K+ channels in the nitric oxide-independent renal vasodilator effect of acetylcholine (Ach) was examined to address the hypothesis that the mechanism underlying this response was different from that of bradykinin, because an earlier study indicated the possibility of different mediators. We used the rat isolated, perfused kidney that was constricted with phenylephrine and treated with nitroarginine and indomethacin to inhibit nitric oxide synthase and cyclooxygenase, respectively. The nonspecific K+ channel inhibitors, procaine and tetraethylammonium (TEA), reduced vasodilator responses to Ach and cromakalim, but not those to nitroprusside. Gilbenclamide, an inhibitor of ATP-sensitive K+ channels, reduced vasodilator responses to cromakalim but did not affect those to Ach or nitroprusside. Charybdotoxin, an inhibitor of Ca++-activated K+ channels, reduced vasodilator responses to Ach without affecting those to cromakalim or nitroprusside. Iberiotoxin and apamin, inhibitors of large- and small-conductance Ca++-activated K+ channels, respectively, did not reduce vasodilation induced by Ach, cromakalim or nitroprusside. The inhibitor of cytochrome P450, clotrimazole, reduced the renal vasodilator effects of Ach and bradykinin but not those of nitroprusside or SCA 40, an agonist for Ca++-activated K+ channels. These results suggest that in the rat kidney, Ach, like bradykinin, utilizes a charybdotoxin-sensitive Ca++-activated K+ channel of intermediate conductance to elicit vasodilation and that this effect may be dependent on cytochrome P450 activity.

UR - http://www.scopus.com/inward/record.url?scp=0031809014&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031809014&partnerID=8YFLogxK

M3 - Article

C2 - 9580610

AN - SCOPUS:0031809014

VL - 285

SP - 659

EP - 664

JO - The Journal of pharmacology and experimental therapeutics

JF - The Journal of pharmacology and experimental therapeutics

SN - 0022-3565

IS - 2

ER -