### Abstract

For a set of positive integers D, a fc-Term D-diffsequence is a sequence of positive integers ai < a2 <...< ak such that a< -Ai € D for all i 6 {2,3,...,k}. If k € Z+ and D € Z+ , define Δ(D,k) to be the least positive integer n such that every 2-coloring of {1,2,... ,n} contains a monochromatic fc-Term D-diffsequence. Bounds find exact values for Δ(D, k) for certain choices of D are given, improving on previous results.

Original language | English (US) |
---|---|

Pages (from-to) | 35-44 |

Number of pages | 10 |

Journal | Journal of Combinatorial Mathematics and Combinatorial Computing |

Volume | 105 |

State | Published - May 1 2018 |

### Fingerprint

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

*Journal of Combinatorial Mathematics and Combinatorial Computing*,

*105*, 35-44.

**Ramsey functions for sequences with restricted gaps.** / Chokshi, Kajal; Clifton, Alexander; Landman, Bruce M.; Sawin, Oliver.

Research output: Contribution to journal › Article

*Journal of Combinatorial Mathematics and Combinatorial Computing*, vol. 105, pp. 35-44.

}

TY - JOUR

T1 - Ramsey functions for sequences with restricted gaps

AU - Chokshi, Kajal

AU - Clifton, Alexander

AU - Landman, Bruce M.

AU - Sawin, Oliver

PY - 2018/5/1

Y1 - 2018/5/1

N2 - For a set of positive integers D, a fc-Term D-diffsequence is a sequence of positive integers ai < a2 <...< ak such that a< -Ai € D for all i 6 {2,3,...,k}. If k € Z+ and D € Z+ , define Δ(D,k) to be the least positive integer n such that every 2-coloring of {1,2,... ,n} contains a monochromatic fc-Term D-diffsequence. Bounds find exact values for Δ(D, k) for certain choices of D are given, improving on previous results.

AB - For a set of positive integers D, a fc-Term D-diffsequence is a sequence of positive integers ai < a2 <...< ak such that a< -Ai € D for all i 6 {2,3,...,k}. If k € Z+ and D € Z+ , define Δ(D,k) to be the least positive integer n such that every 2-coloring of {1,2,... ,n} contains a monochromatic fc-Term D-diffsequence. Bounds find exact values for Δ(D, k) for certain choices of D are given, improving on previous results.

UR - http://www.scopus.com/inward/record.url?scp=85047498626&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85047498626&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:85047498626

VL - 105

SP - 35

EP - 44

JO - Journal of Combinatorial Mathematics and Combinatorial Computing

JF - Journal of Combinatorial Mathematics and Combinatorial Computing

SN - 0835-3026

ER -