Secreted Site-1 protease cleaves peptides corresponding to luminal loop of sterol regulatory element-binding proteins

Dong Cheng, Peter J. Espenshade, Clive A. Slaughter, Juan C. Jaen, Michael S. Brown, Joseph L. Goldstein

Research output: Contribution to journalArticle

57 Citations (Scopus)

Abstract

We describe a permanent line of Chinese hamster ovary cells transfected with a cDNA encoding a truncated form of Site-1 protease (S1P) that is secreted into the culture medium in an enzymatically active form. S1P, a subtilisin-like protease, normally cleaves the luminal loop of sterol regulatory element-binding proteins (SREBPs). This cleavage initiates the two-step proteolytic process by which the NH2-terminal domains of SREBPs are released from cell membranes for translocation to the nucleus, where they activate transcription of genes involved in the biosynthesis and uptake of cholesterol and fatty acids. Truncated S1P (amino acids 1-983), produced by the transfected Chinese hamster ovary cells, lacks the COOH-terminal membrane anchor. Like native S1P, this truncated protein undergoes normal autocatalytic processing after residue 137 to release an NH2-terminal propeptide, thereby generating an active form, designated S1P-B. Prior to secretion, truncated S1P-B, like native S1P-B, is cleaved further after residue 186 to generate S1P-C, which is the only form that appears in the culture medium. The secreted enzyme, designated S1P(983)-C, cleaves a synthetic peptide that terminates in a 7-amino-4-methyl-coumarin fluorochrome. This peptide, RSLK-MCA, corresponds to the internal propeptide cleavage site that generates S1P-B as described in the accompanying paper (Espenshade, P. J., Cheng, D., Goldstein, J. L., and Brown, M. S. (1999), J. Biol. Chem 274, 22795-22804). The secreted enzyme does not cleave RSVL-MCA, a peptide corresponding to the physiologic cleavage site in SREBP-2. However, S1P(983)-C does cleave after this leucine when the RSVL sequence is contained within a 16-residue peptide corresponding to the central portion of the SREBP-2 luminal loop. The catalytic activity of S1P(983)-C differs from that of furir/prohormone convertases, two related proteases, in its more alkaline pH optimum (pH 7-8), its relative resistance to calcium chelating agents, and its ability to cleave after lysine or leucine rather than arginine. These data provide direct biochemical evidence that S1P is the protease that cleaves SREBPs and thereby functions to control lipid biosynthesis and uptake in animal cells.

Original languageEnglish (US)
Pages (from-to)22805-22812
Number of pages8
JournalJournal of Biological Chemistry
Volume274
Issue number32
DOIs
StatePublished - Aug 6 1999

Fingerprint

Sterol Regulatory Element Binding Proteins
Peptides
Sterol Regulatory Element Binding Protein 2
Peptide Hydrolases
Biosynthesis
Cells
Cricetulus
Leucine
site 1 membrane-bound transcription factor peptidase
Culture Media
Ovary
Proprotein Convertases
Subtilisin
Enzymes
Transcription
Cell membranes
Anchors
Fluorescent Dyes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

Secreted Site-1 protease cleaves peptides corresponding to luminal loop of sterol regulatory element-binding proteins. / Cheng, Dong; Espenshade, Peter J.; Slaughter, Clive A.; Jaen, Juan C.; Brown, Michael S.; Goldstein, Joseph L.

In: Journal of Biological Chemistry, Vol. 274, No. 32, 06.08.1999, p. 22805-22812.

Research output: Contribution to journalArticle

Cheng, Dong ; Espenshade, Peter J. ; Slaughter, Clive A. ; Jaen, Juan C. ; Brown, Michael S. ; Goldstein, Joseph L. / Secreted Site-1 protease cleaves peptides corresponding to luminal loop of sterol regulatory element-binding proteins. In: Journal of Biological Chemistry. 1999 ; Vol. 274, No. 32. pp. 22805-22812.
@article{cd6c9b84ca4444a9b65b8bc64341c266,
title = "Secreted Site-1 protease cleaves peptides corresponding to luminal loop of sterol regulatory element-binding proteins",
abstract = "We describe a permanent line of Chinese hamster ovary cells transfected with a cDNA encoding a truncated form of Site-1 protease (S1P) that is secreted into the culture medium in an enzymatically active form. S1P, a subtilisin-like protease, normally cleaves the luminal loop of sterol regulatory element-binding proteins (SREBPs). This cleavage initiates the two-step proteolytic process by which the NH2-terminal domains of SREBPs are released from cell membranes for translocation to the nucleus, where they activate transcription of genes involved in the biosynthesis and uptake of cholesterol and fatty acids. Truncated S1P (amino acids 1-983), produced by the transfected Chinese hamster ovary cells, lacks the COOH-terminal membrane anchor. Like native S1P, this truncated protein undergoes normal autocatalytic processing after residue 137 to release an NH2-terminal propeptide, thereby generating an active form, designated S1P-B. Prior to secretion, truncated S1P-B, like native S1P-B, is cleaved further after residue 186 to generate S1P-C, which is the only form that appears in the culture medium. The secreted enzyme, designated S1P(983)-C, cleaves a synthetic peptide that terminates in a 7-amino-4-methyl-coumarin fluorochrome. This peptide, RSLK-MCA, corresponds to the internal propeptide cleavage site that generates S1P-B as described in the accompanying paper (Espenshade, P. J., Cheng, D., Goldstein, J. L., and Brown, M. S. (1999), J. Biol. Chem 274, 22795-22804). The secreted enzyme does not cleave RSVL-MCA, a peptide corresponding to the physiologic cleavage site in SREBP-2. However, S1P(983)-C does cleave after this leucine when the RSVL sequence is contained within a 16-residue peptide corresponding to the central portion of the SREBP-2 luminal loop. The catalytic activity of S1P(983)-C differs from that of furir/prohormone convertases, two related proteases, in its more alkaline pH optimum (pH 7-8), its relative resistance to calcium chelating agents, and its ability to cleave after lysine or leucine rather than arginine. These data provide direct biochemical evidence that S1P is the protease that cleaves SREBPs and thereby functions to control lipid biosynthesis and uptake in animal cells.",
author = "Dong Cheng and Espenshade, {Peter J.} and Slaughter, {Clive A.} and Jaen, {Juan C.} and Brown, {Michael S.} and Goldstein, {Joseph L.}",
year = "1999",
month = "8",
day = "6",
doi = "10.1074/jbc.274.32.22805",
language = "English (US)",
volume = "274",
pages = "22805--22812",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "32",

}

TY - JOUR

T1 - Secreted Site-1 protease cleaves peptides corresponding to luminal loop of sterol regulatory element-binding proteins

AU - Cheng, Dong

AU - Espenshade, Peter J.

AU - Slaughter, Clive A.

AU - Jaen, Juan C.

AU - Brown, Michael S.

AU - Goldstein, Joseph L.

PY - 1999/8/6

Y1 - 1999/8/6

N2 - We describe a permanent line of Chinese hamster ovary cells transfected with a cDNA encoding a truncated form of Site-1 protease (S1P) that is secreted into the culture medium in an enzymatically active form. S1P, a subtilisin-like protease, normally cleaves the luminal loop of sterol regulatory element-binding proteins (SREBPs). This cleavage initiates the two-step proteolytic process by which the NH2-terminal domains of SREBPs are released from cell membranes for translocation to the nucleus, where they activate transcription of genes involved in the biosynthesis and uptake of cholesterol and fatty acids. Truncated S1P (amino acids 1-983), produced by the transfected Chinese hamster ovary cells, lacks the COOH-terminal membrane anchor. Like native S1P, this truncated protein undergoes normal autocatalytic processing after residue 137 to release an NH2-terminal propeptide, thereby generating an active form, designated S1P-B. Prior to secretion, truncated S1P-B, like native S1P-B, is cleaved further after residue 186 to generate S1P-C, which is the only form that appears in the culture medium. The secreted enzyme, designated S1P(983)-C, cleaves a synthetic peptide that terminates in a 7-amino-4-methyl-coumarin fluorochrome. This peptide, RSLK-MCA, corresponds to the internal propeptide cleavage site that generates S1P-B as described in the accompanying paper (Espenshade, P. J., Cheng, D., Goldstein, J. L., and Brown, M. S. (1999), J. Biol. Chem 274, 22795-22804). The secreted enzyme does not cleave RSVL-MCA, a peptide corresponding to the physiologic cleavage site in SREBP-2. However, S1P(983)-C does cleave after this leucine when the RSVL sequence is contained within a 16-residue peptide corresponding to the central portion of the SREBP-2 luminal loop. The catalytic activity of S1P(983)-C differs from that of furir/prohormone convertases, two related proteases, in its more alkaline pH optimum (pH 7-8), its relative resistance to calcium chelating agents, and its ability to cleave after lysine or leucine rather than arginine. These data provide direct biochemical evidence that S1P is the protease that cleaves SREBPs and thereby functions to control lipid biosynthesis and uptake in animal cells.

AB - We describe a permanent line of Chinese hamster ovary cells transfected with a cDNA encoding a truncated form of Site-1 protease (S1P) that is secreted into the culture medium in an enzymatically active form. S1P, a subtilisin-like protease, normally cleaves the luminal loop of sterol regulatory element-binding proteins (SREBPs). This cleavage initiates the two-step proteolytic process by which the NH2-terminal domains of SREBPs are released from cell membranes for translocation to the nucleus, where they activate transcription of genes involved in the biosynthesis and uptake of cholesterol and fatty acids. Truncated S1P (amino acids 1-983), produced by the transfected Chinese hamster ovary cells, lacks the COOH-terminal membrane anchor. Like native S1P, this truncated protein undergoes normal autocatalytic processing after residue 137 to release an NH2-terminal propeptide, thereby generating an active form, designated S1P-B. Prior to secretion, truncated S1P-B, like native S1P-B, is cleaved further after residue 186 to generate S1P-C, which is the only form that appears in the culture medium. The secreted enzyme, designated S1P(983)-C, cleaves a synthetic peptide that terminates in a 7-amino-4-methyl-coumarin fluorochrome. This peptide, RSLK-MCA, corresponds to the internal propeptide cleavage site that generates S1P-B as described in the accompanying paper (Espenshade, P. J., Cheng, D., Goldstein, J. L., and Brown, M. S. (1999), J. Biol. Chem 274, 22795-22804). The secreted enzyme does not cleave RSVL-MCA, a peptide corresponding to the physiologic cleavage site in SREBP-2. However, S1P(983)-C does cleave after this leucine when the RSVL sequence is contained within a 16-residue peptide corresponding to the central portion of the SREBP-2 luminal loop. The catalytic activity of S1P(983)-C differs from that of furir/prohormone convertases, two related proteases, in its more alkaline pH optimum (pH 7-8), its relative resistance to calcium chelating agents, and its ability to cleave after lysine or leucine rather than arginine. These data provide direct biochemical evidence that S1P is the protease that cleaves SREBPs and thereby functions to control lipid biosynthesis and uptake in animal cells.

UR - http://www.scopus.com/inward/record.url?scp=0033529545&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033529545&partnerID=8YFLogxK

U2 - 10.1074/jbc.274.32.22805

DO - 10.1074/jbc.274.32.22805

M3 - Article

VL - 274

SP - 22805

EP - 22812

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 32

ER -