TNFα cooperates with IFN-γ to repress Bcl-xL expression to sensitize metastatic colon carcinoma cells to TRAIL-mediated apoptosis

Feiyan Liu, Xiaolin Hu, Mary Zimmerman, Jennifer L. Waller, Ping Wu, Andrea Hayes-Jordan, Dina Lev, Kebin Liu

Research output: Contribution to journalArticle

34 Scopus citations


Background: TNF-related apoptosis-inducing ligand (TRAIL) is an immune effector molecule that functions as a selective anti-tumor agent. However, tumor cells, especially metastatic tumor cells often exhibit a TRAIL-resistant phenotype, which is currently a major impediment in TRAIL therapy. The aim of this study is to investigate the synergistic effect of TNFα and IFNγ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis. Methodology/Principal Findings: The efficacy and underlying molecular mechanism of cooperation between TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis were examined. The functional significance of TNFα- and IFN-γ-producing T lymphocyte immunotherapy in combination with TRAIL therapy in suppression of colon carcinoma metastasis was determined in an experimental metastasis mouse model. We observed that TNFα or IFNγ alone exhibits minimal sensitization effects, but effectively sensitized metastatic colon carcinoma cells to TRAIL-induced apoptosis when used in combination. TNFα and IFN-γ cooperate to repress Bcl-xL expression, whereas TNFα represses Survivin expression in the metastatic colon carcinoma cells. Silencing Bcl-xL expression significantly increased the metastatic colon carcinoma cell sensitivity to TRAIL-induced apoptosis. Conversely, overexpression of Bcl-xL significantly decreased the tumor cell sensitivity to TRAIL-induced apoptosis. Furthermore, TNFα and IFN-γ also synergistically enhanced TRAIL-induced caspase-8 activation. TNFα and IFN-γ was up-regulated in activated primary and tumor-specific T cells. TRAIL was expressed in tumor-infiltrating immune cells in vivo, and in tumor-specific cytotoxic T lymphocytes (CTL) ex vivo. Consequently, TRAIL therapy in combination with TNFα/IFN-γ-producing CTL adoptive transfer immunotherapy effectively suppressed colon carcinoma metastasis in vivo. Conclusions/Significance: TNFα and IFN-γ cooperate to overcome TRAIL resistance at least partially through enhancing caspase 8 activation and repressing Bcl-xL expression. Combined CTL immunotherapy and TRAIL therapy hold great promise for further development for the treatment of metastatic colorectal cancer.

Original languageEnglish (US)
Article numbere16241
JournalPloS one
Issue number1
Publication statusPublished - Feb 2 2011


ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Cite this