Traceless chemical ligation from S -, O -, and N-acyl isopeptides

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Peptides are ubiquitous in nature where they play crucial roles as catalysts (enzymes), cell membrane ion transporters, and structural elements (proteins) within biological systems. In addition, both linear and cyclic peptides have found use as pharmaceuticals and components of various conjugate molecular systems. Small wonder then that chemists throughout the ages have sought to mimic nature by synthesis of the amide polymers known as peptides and proteins.The fundamental reaction in the formation of a peptide bond is condensation of an amine of one amino acid with the activated carbonyl group of another. This "fragment condensation" has been achieved in many ways both in solution and by solid-phase peptide synthesis (SPSS) on resin. The most successful method for in-solution coupling is known as native chemical ligation (NCL), and the technique dates back to the pioneering work of Wieland (1953) and subsequently Kent (1994) among many others. This Account builds on the established principles of NCL as applied specifically to S-, O-, and N-isopeptides, molecules that are generally more soluble and less prone to aggregation than native peptides.This Account also covers NCL of isopeptides containing terminal and nonterminal S-acylated cysteine units, reactions that enable the synthesis of native peptides from S-acyl peptides without the use of auxiliaries. With C-terminal S-acyl isopeptides, NCL was carried out under microwave irradiation in phosphate buffer (pH 7.3) at 50°C. Intramolecular acyl migration was observed through 5-19-membered transition states with relative rates, as assessed by product analysis, in the order, 5 > 10 > 11 > 14, 16, or 17 > 12 > 13, 15, or 19 > 18 ≫ 9 > 8. The rate/pH profile for the 15-membered TS showed a maximum for ligated product versus transacylation at pH 7.0-7.3 presumably associated with the pK a of the N-nucleophile in the hydrogen-bonded TS. Cysteine occurs at low abundance (1.7%) in natural peptides and is rarely available in a terminal position thus limiting the utility of the method. This Account reports, however, NCL at nonterminal acyl cysteine through 5-, 8-, 11-, and 14-membered TSs with relative rates of ligation in the order, 5 ≫ 14 > 11 ≫ 8, thus paralleling the results with acylated terminal cysteine residues.In an obvious sequel to the work with acylated cysteine, we discuss intramolecular O- to N-acyl shift in O-acyl serine and O-acyl tyrosine isopeptides where the story becomes more complex in terms of viable conditions and optimum size of the cyclic TS. N- to N-acyl migration in acyl tryptophan isopeptides is described, and finally, chemical ligation is applied to the synthesis of cyclic peptides. Conformational analysis and quantum chemical calculations are used to rationalize ligation through a range of cyclic transition states.This Account highlights the fact that NCL of acyl isopeptides is an extremely useful strategy for the synthesis of a wide variety of native peptides in good yields and under mild conditions. Mechanistic aspects of the ligations are not fully resolved, but theoretical studies indicate that hydrogen bonding within the various cyclic transition states plays a major role.

Original languageEnglish (US)
Pages (from-to)1076-1087
Number of pages12
JournalAccounts of Chemical Research
Volume47
Issue number4
DOIs
StatePublished - Apr 15 2014

Fingerprint

Ligation
Peptides
Cysteine
Cyclic Peptides
Condensation
Nucleophiles
Microwave irradiation
Solid-Phase Synthesis Techniques
Return to Work
Membrane Transport Proteins
Biological systems
Cell membranes
Amides
Tryptophan
Hydrogen Bonding
Serine
Microwaves
Amines
Byproducts
Tyrosine

ASJC Scopus subject areas

  • Chemistry(all)
  • Medicine(all)

Cite this

Traceless chemical ligation from S -, O -, and N-acyl isopeptides. / Panda, Siva S.

In: Accounts of Chemical Research, Vol. 47, No. 4, 15.04.2014, p. 1076-1087.

Research output: Contribution to journalArticle

@article{46fbe0e595df4c8ebd6264a3345649a8,
title = "Traceless chemical ligation from S -, O -, and N-acyl isopeptides",
abstract = "Peptides are ubiquitous in nature where they play crucial roles as catalysts (enzymes), cell membrane ion transporters, and structural elements (proteins) within biological systems. In addition, both linear and cyclic peptides have found use as pharmaceuticals and components of various conjugate molecular systems. Small wonder then that chemists throughout the ages have sought to mimic nature by synthesis of the amide polymers known as peptides and proteins.The fundamental reaction in the formation of a peptide bond is condensation of an amine of one amino acid with the activated carbonyl group of another. This {"}fragment condensation{"} has been achieved in many ways both in solution and by solid-phase peptide synthesis (SPSS) on resin. The most successful method for in-solution coupling is known as native chemical ligation (NCL), and the technique dates back to the pioneering work of Wieland (1953) and subsequently Kent (1994) among many others. This Account builds on the established principles of NCL as applied specifically to S-, O-, and N-isopeptides, molecules that are generally more soluble and less prone to aggregation than native peptides.This Account also covers NCL of isopeptides containing terminal and nonterminal S-acylated cysteine units, reactions that enable the synthesis of native peptides from S-acyl peptides without the use of auxiliaries. With C-terminal S-acyl isopeptides, NCL was carried out under microwave irradiation in phosphate buffer (pH 7.3) at 50°C. Intramolecular acyl migration was observed through 5-19-membered transition states with relative rates, as assessed by product analysis, in the order, 5 > 10 > 11 > 14, 16, or 17 > 12 > 13, 15, or 19 > 18 ≫ 9 > 8. The rate/pH profile for the 15-membered TS showed a maximum for ligated product versus transacylation at pH 7.0-7.3 presumably associated with the pK a of the N-nucleophile in the hydrogen-bonded TS. Cysteine occurs at low abundance (1.7{\%}) in natural peptides and is rarely available in a terminal position thus limiting the utility of the method. This Account reports, however, NCL at nonterminal acyl cysteine through 5-, 8-, 11-, and 14-membered TSs with relative rates of ligation in the order, 5 ≫ 14 > 11 ≫ 8, thus paralleling the results with acylated terminal cysteine residues.In an obvious sequel to the work with acylated cysteine, we discuss intramolecular O- to N-acyl shift in O-acyl serine and O-acyl tyrosine isopeptides where the story becomes more complex in terms of viable conditions and optimum size of the cyclic TS. N- to N-acyl migration in acyl tryptophan isopeptides is described, and finally, chemical ligation is applied to the synthesis of cyclic peptides. Conformational analysis and quantum chemical calculations are used to rationalize ligation through a range of cyclic transition states.This Account highlights the fact that NCL of acyl isopeptides is an extremely useful strategy for the synthesis of a wide variety of native peptides in good yields and under mild conditions. Mechanistic aspects of the ligations are not fully resolved, but theoretical studies indicate that hydrogen bonding within the various cyclic transition states plays a major role.",
author = "Panda, {Siva S.}",
year = "2014",
month = "4",
day = "15",
doi = "10.1021/ar400242q",
language = "English (US)",
volume = "47",
pages = "1076--1087",
journal = "Accounts of Chemical Research",
issn = "0001-4842",
publisher = "American Chemical Society",
number = "4",

}

TY - JOUR

T1 - Traceless chemical ligation from S -, O -, and N-acyl isopeptides

AU - Panda, Siva S.

PY - 2014/4/15

Y1 - 2014/4/15

N2 - Peptides are ubiquitous in nature where they play crucial roles as catalysts (enzymes), cell membrane ion transporters, and structural elements (proteins) within biological systems. In addition, both linear and cyclic peptides have found use as pharmaceuticals and components of various conjugate molecular systems. Small wonder then that chemists throughout the ages have sought to mimic nature by synthesis of the amide polymers known as peptides and proteins.The fundamental reaction in the formation of a peptide bond is condensation of an amine of one amino acid with the activated carbonyl group of another. This "fragment condensation" has been achieved in many ways both in solution and by solid-phase peptide synthesis (SPSS) on resin. The most successful method for in-solution coupling is known as native chemical ligation (NCL), and the technique dates back to the pioneering work of Wieland (1953) and subsequently Kent (1994) among many others. This Account builds on the established principles of NCL as applied specifically to S-, O-, and N-isopeptides, molecules that are generally more soluble and less prone to aggregation than native peptides.This Account also covers NCL of isopeptides containing terminal and nonterminal S-acylated cysteine units, reactions that enable the synthesis of native peptides from S-acyl peptides without the use of auxiliaries. With C-terminal S-acyl isopeptides, NCL was carried out under microwave irradiation in phosphate buffer (pH 7.3) at 50°C. Intramolecular acyl migration was observed through 5-19-membered transition states with relative rates, as assessed by product analysis, in the order, 5 > 10 > 11 > 14, 16, or 17 > 12 > 13, 15, or 19 > 18 ≫ 9 > 8. The rate/pH profile for the 15-membered TS showed a maximum for ligated product versus transacylation at pH 7.0-7.3 presumably associated with the pK a of the N-nucleophile in the hydrogen-bonded TS. Cysteine occurs at low abundance (1.7%) in natural peptides and is rarely available in a terminal position thus limiting the utility of the method. This Account reports, however, NCL at nonterminal acyl cysteine through 5-, 8-, 11-, and 14-membered TSs with relative rates of ligation in the order, 5 ≫ 14 > 11 ≫ 8, thus paralleling the results with acylated terminal cysteine residues.In an obvious sequel to the work with acylated cysteine, we discuss intramolecular O- to N-acyl shift in O-acyl serine and O-acyl tyrosine isopeptides where the story becomes more complex in terms of viable conditions and optimum size of the cyclic TS. N- to N-acyl migration in acyl tryptophan isopeptides is described, and finally, chemical ligation is applied to the synthesis of cyclic peptides. Conformational analysis and quantum chemical calculations are used to rationalize ligation through a range of cyclic transition states.This Account highlights the fact that NCL of acyl isopeptides is an extremely useful strategy for the synthesis of a wide variety of native peptides in good yields and under mild conditions. Mechanistic aspects of the ligations are not fully resolved, but theoretical studies indicate that hydrogen bonding within the various cyclic transition states plays a major role.

AB - Peptides are ubiquitous in nature where they play crucial roles as catalysts (enzymes), cell membrane ion transporters, and structural elements (proteins) within biological systems. In addition, both linear and cyclic peptides have found use as pharmaceuticals and components of various conjugate molecular systems. Small wonder then that chemists throughout the ages have sought to mimic nature by synthesis of the amide polymers known as peptides and proteins.The fundamental reaction in the formation of a peptide bond is condensation of an amine of one amino acid with the activated carbonyl group of another. This "fragment condensation" has been achieved in many ways both in solution and by solid-phase peptide synthesis (SPSS) on resin. The most successful method for in-solution coupling is known as native chemical ligation (NCL), and the technique dates back to the pioneering work of Wieland (1953) and subsequently Kent (1994) among many others. This Account builds on the established principles of NCL as applied specifically to S-, O-, and N-isopeptides, molecules that are generally more soluble and less prone to aggregation than native peptides.This Account also covers NCL of isopeptides containing terminal and nonterminal S-acylated cysteine units, reactions that enable the synthesis of native peptides from S-acyl peptides without the use of auxiliaries. With C-terminal S-acyl isopeptides, NCL was carried out under microwave irradiation in phosphate buffer (pH 7.3) at 50°C. Intramolecular acyl migration was observed through 5-19-membered transition states with relative rates, as assessed by product analysis, in the order, 5 > 10 > 11 > 14, 16, or 17 > 12 > 13, 15, or 19 > 18 ≫ 9 > 8. The rate/pH profile for the 15-membered TS showed a maximum for ligated product versus transacylation at pH 7.0-7.3 presumably associated with the pK a of the N-nucleophile in the hydrogen-bonded TS. Cysteine occurs at low abundance (1.7%) in natural peptides and is rarely available in a terminal position thus limiting the utility of the method. This Account reports, however, NCL at nonterminal acyl cysteine through 5-, 8-, 11-, and 14-membered TSs with relative rates of ligation in the order, 5 ≫ 14 > 11 ≫ 8, thus paralleling the results with acylated terminal cysteine residues.In an obvious sequel to the work with acylated cysteine, we discuss intramolecular O- to N-acyl shift in O-acyl serine and O-acyl tyrosine isopeptides where the story becomes more complex in terms of viable conditions and optimum size of the cyclic TS. N- to N-acyl migration in acyl tryptophan isopeptides is described, and finally, chemical ligation is applied to the synthesis of cyclic peptides. Conformational analysis and quantum chemical calculations are used to rationalize ligation through a range of cyclic transition states.This Account highlights the fact that NCL of acyl isopeptides is an extremely useful strategy for the synthesis of a wide variety of native peptides in good yields and under mild conditions. Mechanistic aspects of the ligations are not fully resolved, but theoretical studies indicate that hydrogen bonding within the various cyclic transition states plays a major role.

UR - http://www.scopus.com/inward/record.url?scp=84898864648&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84898864648&partnerID=8YFLogxK

U2 - 10.1021/ar400242q

DO - 10.1021/ar400242q

M3 - Article

C2 - 24617996

AN - SCOPUS:84898864648

VL - 47

SP - 1076

EP - 1087

JO - Accounts of Chemical Research

JF - Accounts of Chemical Research

SN - 0001-4842

IS - 4

ER -